Détail de l'auteur
Auteur Farid Chemat
Commentaire :
Professeur des universités à l'Université d'Avignon et des Pays de Vaucluse, responsable du laboratoire et plateforme GREEN (Groupe de recherche en éco-extraction des produits naturels)
|
Documents disponibles écrits par cet auteur



Titre : Éco-extraction du végétal : procédés innovants et solvants alternatifs Type de document : texte imprimé Auteurs : Farid Chemat, Auteur Editeur : Paris : Dunod Année de publication : 2014 Collection : Technique et ingénierie Sous-collection : Série Environnement Importance : 1 vol. (XI-322 p.) Présentation : ill., couv. ill. en coul. Format : 25 cm ISBN/ISSN/EAN : 978-2-10-072209-9 Prix : 69 EUR Note générale : Notes bibliogr.
IndexLangues : Français (fre) Catégories : RAMEAU
Écologie chimique ; Plantes -- Biotechnologie ; Extraction (chimie)Résumé : L'éco-extraction est fondée sur la découverte et la conception de procédés d'extraction permettant de réduire la consommation énergétique, d'utiliser des solvants alternatifs et de privilégier des ressources végétales renouvelables, tout en garantissant un produit ou un extrait de qualité.
Cet ouvrage constitue un état de l'art sur les nouvelles technologies aussi bien sur le plan des procédés innovants que sur le plan des solvants alternatifs utilisables en industrie et en recherche.Type de document : Livre Permalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=170746 Éco-extraction du végétal : procédés innovants et solvants alternatifs [texte imprimé] / Farid Chemat, Auteur . - Paris : Dunod, 2014 . - 1 vol. (XI-322 p.) : ill., couv. ill. en coul. ; 25 cm. - (Technique et ingénierie. Série Environnement, ISSN 1624-1843) .
ISBN : 978-2-10-072209-9 : 69 EUR
Notes bibliogr.
Index
Langues : Français (fre)
Catégories : RAMEAU
Écologie chimique ; Plantes -- Biotechnologie ; Extraction (chimie)Résumé : L'éco-extraction est fondée sur la découverte et la conception de procédés d'extraction permettant de réduire la consommation énergétique, d'utiliser des solvants alternatifs et de privilégier des ressources végétales renouvelables, tout en garantissant un produit ou un extrait de qualité.
Cet ouvrage constitue un état de l'art sur les nouvelles technologies aussi bien sur le plan des procédés innovants que sur le plan des solvants alternatifs utilisables en industrie et en recherche.Type de document : Livre Permalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=170746 Réservation
Réserver ce documentExemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Paris Claude Bernard Bibliothèque BIOCHIMIE-BIOPHYSIQUE (Rouge) P2014/295 Papier 33004001151516 Empruntable Green extraction of natural products : theory and practice (2015)
Titre : Green extraction of natural products : theory and practice Type de document : texte imprimé Auteurs : Farid Chemat, Editeur scientifique ; Jochen Strube, Editeur scientifique Editeur : WEINHEIM : Wiley-VCH Année de publication : 2015 Importance : 1 vol. (XVIII-363 p.) Présentation : ill. en coul., couv. ill. en coul. Format : 25 cm ISBN/ISSN/EAN : 978-3-527-33653-1 Note générale : Bibliogr. Index Langues : Anglais (eng) Catégories : Liste Plan de classement
16.5 (SEPARATION-PURIFICATION-EXTRACTION) [Classement Massy]
Thésaurus Agro-alimentaire
TRANSFERT DE MASSE ; EXTRACTION ; EXTRACTION PAR SOLVANT ; SOUS PRODUIT ; VEGETAUX ; TECHNIQUE CULTURALERésumé : Extraction processes are essential steps in numerous industrial applications from perfume over pharmaceutical to fine chemical industry. Nowadays, there are three key aspects in industrial extraction processes: economy and quality, as well as environmental considerations. This book presents a complete picture of current knowledge on green extraction in terms of innovative processes, original methods, alternative solvents and safe products, and provides the necessary theoretical background as well as industrial application examples and environmental impacts. Each chapter is written by experts in the field and the strong focus on green chemistry throughout the book makes this book a unique reference source. This book is intended to be a first step towards a future cooperation in a new extraction of natural products, built to improve both fundamental and green parameters of the techniques and to increase the amount of extracts obtained from renewable resources with a minimum consumption of energy and solvents, and the maximum safety for operators and the environment. Type de document : Livre Table des matières : 1 Green Extraction: From Concepts to Research, Education, and Economical Opportunities
Farid Chemat, Natacha Rombaut, Anne-Sylvie Fabiano-Tixier, Jean T. Pierson, and Antoine Bily
1.1 Introduction
1.2 Orange Fruit is not Limited to Produce Only Juice?
1.3 Chemistry of Natural Products
1.3.1 Primary Metabolites
1.3.1.1 Glucides
1.3.1.2 Lipids
1.3.1.3 Amino Acids and Proteins
1.3.2 Secondary Metabolites
1.3.2.1 Terpenoids
1.3.2.2 Alkaloids
1.3.2.3 Polyphenols
1.4 From Metabolites to Ingredients
1.5 Green Extraction from Research to Teaching
1.5.1 Principle: Innovation by Selection of Varieties and Use of Renewable Plant Resources
1.5.2 Principle: Use of Alternative Solvents and Agro Solvent
1.5.3 Principle: Production of Coproducts Instead ofWaste to Include Biorefinery
1.5.4 Principle: Prioritizing a Non-denatured and Biodegradable Extract without Contaminant
1.6 Conclusions and Perspective
2 Process Engineering and Product Design for Green Extraction
Simon Both, Reinhard Ditz, Martin Tegtmeier, Urban Jenelten, and Jochen Strube
2.1 Market and Market Development
2.2 Regulatory Framework
2.3 Systematic Apparatus and Process Design
2.3.1 Design of Experiments
2.3.2 Graphical Calculation Methods
2.3.3 Physicochemical Modeling
2.3.4 Approaches for Description of Diffusion
2.3.4.1 Maxwell-Stefan Approach
2.3.4.2 Calculation of Diffusion Coefficients
2.3.4.3 Thermodynamic Factor
2.3.4.4 Determination of Activity Coefficients
2.3.4.5 Proof of Principle
2.4 Model-Based Realization: Apparatus and Process Design
2.4.1 Quantification of Determining Factors
2.4.2 Proof of Principle – Process Optimization
2.4.3 Proof of Principle – Cost-Driven Decision
2.5 Extract Purification
2.5.1 Modeling Approaches
2.5.2 Scale-Up and Mini-plant
2.6 Total Process Development and Design
2.7 Conclusions and Summary
3 Tailor-Made Production of Plants for Green Extraction
Hansjoerg Hagels
3.1 Introduction
3.2 Sustainable Processes
3.2.1 Social Sustainability
3.2.2 Environmental Sustainability
3.2.3 Economic Sustainability
3.3 Production Technology
3.3.1 Choice of Cultivation Location
3.3.2 Crop Rotation
3.3.3 Fertilization
3.3.4 Organic Farming
3.4 Seed and Seed Stock
3.4.1 Breeding
3.4.2 Seed
3.4.3 Vegetative Propagation
3.4.4 Stock Maintenance
3.4.4.1 Diseases
3.4.5 Pests
3.4.5.1 Weed Control
3.4.6 Harvesting Technology
3.4.8 Mechanical Treatment
3.4.9 Thermal Treatment
3.4.9.1 Natural Drying
3.4.9.2 Artificial Drying
3.5 Quality Criteria
3.5.1 Quality Management
3.5.2 Quality Control
4 Mass Transfer Enhancement for Solid–Liquid Extractions
Simon Both, Jochen Strube, and Giancarlo Cravatto
4.1 Introduction
4.2 State of the Art Solid-Liquid Extraction
4.2.1 Batch Processes
4.2.2 Continuous Processes
4.2.3 Hydro- and Steam Distillation
4.2.4 Alembic Distillation
4.2.5 Mechanical Expression (Extrusion)
4.3 Enhancement of Solid–Liquid Extraction Processes
4.3.1 Microwave-Assisted Extraction (MAE)
4.3.2 Ultrasound-Assisted Extraction (UAE)
4.3.3 Turbo Extraction
4.4 Example Processes for Solid–Liquid Extraction Enhancement
4.4.1 Extraction of Polyphenols from Black Tea – Conventional and Ultrasound-Assisted Extraction
4.4.1.1 Material and Methods
4.4.1.2 Equipment Concepts
4.4.1.3 Equilibrium Line by Multistage Maceration and Total Extraction
4.4.1.4 Mass Transport Kinetics
4.4.1.5 Particle Size Distribution
4.4.1.6 SEM Measurements – Cell Disruption
4.4.1.7 Conclusions
4.4.2 Pilot Scale UAE of Clove Buds in Batch and Flow Reactors
4.4.2.1 Experimental Methods and Reactors
4.4.2.2 Results and Discussion
4.4.2.3 Conclusions
4.4.3 UAE and MAE of Lipids from Microalgae
4.4.3.1 Experimental Methods and Equipments
4.4.3.2 Conclusions
4.5 Conclusion
5 Fundamentals of Process-Intensification Strategy for Green Extraction Operations
Tamara Allaf and Karim Allaf
5.1 Process-Intensification Strategy PI-S from High Capacity to High Controlled Quality Industrial Manufacturing
5.2 What Does “Intensified Industrial Manufacturing” Mean?
5.2.1 Unit Operation Performance
5.2.2 Final Product Quality
5.2.3 Equipment Reliability
5.3 Intensification Strategy as a Pluridimensional Approach
5.3.1 Objectives of Intensification Strategy
5.3.2 Specific Case of Food Industry
5.3.3 PI-S as a Continual Progressing-Development Strategy
5.4 Fundamentals for Starting Basis Analyses
5.4.1 Intensification Procedure
5.4.1.1 Intensification Cycle
5.4.1.2 Multi-cycle Intensification Procedure
5.4.1.3 Intensification Charter
5.4.2 Specificities of Instant Controlled Pressure DIC Drop in Process Intensification Strategy PI-S
5.4.2.1 Introduction
5.4.2.2 Transfer Phenomena in Instantaneous Controlled Pressure Drop DIC Treatment
5.4.2.3 DIC – Texturing
5.4.3 Mass Transfer by Permeability
5.5 Processes of Extraction
5.5.1 Extraction of Volatile Compounds
5.5.1.1 Kinetics
5.5.1.2 Intensification of Essential Oil Extraction
5.5.2 Case of Solvent extraction
5.5.2.1 Introduction
5.5.2.2 Extraction Process Issues
5.5.2.3 Kinetic Modeling
5.5.3 Conclusion: Process Intensification Strategy: How to Use PI-S Solvent Extraction Processes?
5.6 Conclusion
6 Panorama of Sustainable Solvents for Green Extraction Processes
Iraj Koudous, Werner Kunz, and Jochen Strube
6.1 Introduction
6.2 Thermodynamic Models of Mixing and Dissolving
6.2.1 UNIFAC and Modified UNIFAC
6.2.2 The Hansen Solubility Parameters
6.2.3 COSMO and COSMO-RS
6.2.3.1 Example 1: Mutual Solubility of Acetone with Benzene, Chloroform, and Carbon disulfide
6.2.3.2 Example 2: Solubility Screening for Indigo
6.3 Solvent Selection for Green Solid–Liquid Extraction
6.3.1 General Green Solvent Ranking with COSMO-RS
6.3.2 Concrete Example: Solid–Liquid Extraction of Carnesol and Carnosic Acid from Sage
6.3.3 Experimental Validation of COSMO-RS Solvent Ranking
6.3.4 Conclusion
6.4 Alternative Solvents for Green Extraction
6.4.1 Ionic Liquids
6.4.2 Low-Transition-Temperature Mixtures and Deep Eutectic Solvents
6.4.3 Ionic Liquids Screening with COSMO-RS
6.5 Purification Strategies of Natural Products
6.5.1 Databased and Calculated Physicochemical Properties
6.5.2 Feed Characterization
6.5.2.1 Conceptual Process Design
6.5.2.2 Modeling Depths and Feed Characterization Approach
6.5.2.3 System 1: Vanillin
6.5.2.4 Potential Unit Operations for Product Purification
6.5.2.5 Data Evaluation
6.5.2.6 Model-Based Process Design and Calculation of Separation Costs
6.5.2.7 Separation Cost Estimation
6.5.2.8 System 2: Tea Aroma
6.5.2.9 Data for Potential Unit Operation
6.5.2.10 Process Design and Cost Estimation
6.5.2.11 Discussion and Conclusions
7 Water as Green Solvent for Extraction of Natural Products
Loïc Petigny, Mustafa Zafer Özel, Sandrine Périno, Joël Wajsman, and Farid Chemat
7.1 Introduction
7.2 Maceration
7.2.1 Principle and Process
7.2.2 Applications
7.3 Subcritical Water Extraction
7.3.1 Principle and Process
7.3.2 Applications
7.4 Enzymatic Assistance
7.4.1 Principles and Process
7.4.2 Applications
7.5 Micellar Extraction
7.5.1 Principle and Process
7.5.2 Applications
7.6 Hydrotropes
7.6.1 Principles and Process
7.6.2 Applications
7.7 Conclusion
8 Coverage Exploitation of By-Products from the Agrofood Industry
Carlos A. Ledesma-Escobar and María D. Luque de Castro
8.1 Introduction
8.2 Treatments for Safe Disposal/Exploitation of Agrofood Wastes or Residues
8.2.1 Physical Processes
8.2.2 Physicochemical Processes
8.2.3 Advanced Oxidation Processes
8.2.4 Thermal Processes
8.2.5 Biological Treatments
8.3 Exploitation of By-products from Olive Trees and Olive Oil Production
8.3.1 Generalities
8.3.2 Exploitation of Alpechín
8.3.3 Overall Use of Either Alperujo or Orujo
8.3.4 Partial Use of Either Alpechín or Alperujo
8.3.5 Olive Leaf Exploitation
8.3.6 Foreseeable/Desirable Future Uses of Olive Tree–Olive Oil Wastes
8.4 Exploitation of By-products from Vineyards and Wine Production
8.4.1 Generalities
8.4.2 Types and Characteristics of Vineyard Residues
8.4.3 Present and Potential Exploitation of Vineyard Residues
8.4.4 Types and Characteristics ofWine Residues
8.4.5 Present and Potential Exploitation of Wine Residues: Overall and Partial Exploitation
8.5 Exploitation of By-products from the Citrus Juice Industry
8.5.1 Generalities
8.5.2 Uses and Potential Applications of Bioactive Compounds from Citrus Residues
8.5.3 Potential Exploitation of Citrus Residues for Energy Production
8.5.4 Other Overall and Partial Uses of Citrus Residues
9 Selective Extraction from Food Plants and Residues by Pulsed Electric Field
Eugene Vorobiev and Nikolai Lebovka
9.1 Introduction
9.2 Basics of PEF-Assisted Extraction
9.3 Application of PEF for Different Food Plants and Residues
9.3.1 Sugar Beets
9.3.2 Red Beets
9.3.3 Chicory Roots
9.3.4 Apples
9.3.5 Grapes
9.3.6 Other Fruits and Vegetables
9.3.7 Egg Yolk
9.3.8 Bio-suspensions and Yeasts
9.3.9 Microalgae
9.3.10 Rhizomes
9.3.11 Bones
9.3.12 Eggshell
9.3.13 Leaves
9.3.14 Herbs
9.3.15 Ginseng
9.3.16 Peels
9.3.17 Mushrooms
9.3.18 Juices and Juice-Based Beverages
9.4 Conclusions
10 Green Extraction of Artemisinin from Artemisia annua L
Alexei A. Lapkin
10.1 Introduction
10.2 Extraction Technologies for Isolation of Artemisinin from A. annua
10.2.1 Industrial Extraction Processes
10.2.2 Cleaner and Intensified Processes for Extraction of Artemisinin
10.2.2.1 Innovative Process Conditions for Extraction
10.2.2.2 Alternative Solvents for Extraction of Artemisinin
10.3 Innovation in Artemisinin Purification
10.3.1 Hybrid Adsorption–Crystallization Separation
10.3.2 Column and HPLC Chromatography
10.3.3 Countercurrent Chromatography
10.4 Analysis of Artemisinin and Co-metabolites
10.5 Conclusions and OutlookPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=183165 Green extraction of natural products : theory and practice [texte imprimé] / Farid Chemat, Editeur scientifique ; Jochen Strube, Editeur scientifique . - WEINHEIM : Wiley-VCH, 2015 . - 1 vol. (XVIII-363 p.) : ill. en coul., couv. ill. en coul. ; 25 cm.
ISBN : 978-3-527-33653-1
Bibliogr. Index
Langues : Anglais (eng)
Catégories : Liste Plan de classement
16.5 (SEPARATION-PURIFICATION-EXTRACTION) [Classement Massy]
Thésaurus Agro-alimentaire
TRANSFERT DE MASSE ; EXTRACTION ; EXTRACTION PAR SOLVANT ; SOUS PRODUIT ; VEGETAUX ; TECHNIQUE CULTURALERésumé : Extraction processes are essential steps in numerous industrial applications from perfume over pharmaceutical to fine chemical industry. Nowadays, there are three key aspects in industrial extraction processes: economy and quality, as well as environmental considerations. This book presents a complete picture of current knowledge on green extraction in terms of innovative processes, original methods, alternative solvents and safe products, and provides the necessary theoretical background as well as industrial application examples and environmental impacts. Each chapter is written by experts in the field and the strong focus on green chemistry throughout the book makes this book a unique reference source. This book is intended to be a first step towards a future cooperation in a new extraction of natural products, built to improve both fundamental and green parameters of the techniques and to increase the amount of extracts obtained from renewable resources with a minimum consumption of energy and solvents, and the maximum safety for operators and the environment. Type de document : Livre Table des matières : 1 Green Extraction: From Concepts to Research, Education, and Economical Opportunities
Farid Chemat, Natacha Rombaut, Anne-Sylvie Fabiano-Tixier, Jean T. Pierson, and Antoine Bily
1.1 Introduction
1.2 Orange Fruit is not Limited to Produce Only Juice?
1.3 Chemistry of Natural Products
1.3.1 Primary Metabolites
1.3.1.1 Glucides
1.3.1.2 Lipids
1.3.1.3 Amino Acids and Proteins
1.3.2 Secondary Metabolites
1.3.2.1 Terpenoids
1.3.2.2 Alkaloids
1.3.2.3 Polyphenols
1.4 From Metabolites to Ingredients
1.5 Green Extraction from Research to Teaching
1.5.1 Principle: Innovation by Selection of Varieties and Use of Renewable Plant Resources
1.5.2 Principle: Use of Alternative Solvents and Agro Solvent
1.5.3 Principle: Production of Coproducts Instead ofWaste to Include Biorefinery
1.5.4 Principle: Prioritizing a Non-denatured and Biodegradable Extract without Contaminant
1.6 Conclusions and Perspective
2 Process Engineering and Product Design for Green Extraction
Simon Both, Reinhard Ditz, Martin Tegtmeier, Urban Jenelten, and Jochen Strube
2.1 Market and Market Development
2.2 Regulatory Framework
2.3 Systematic Apparatus and Process Design
2.3.1 Design of Experiments
2.3.2 Graphical Calculation Methods
2.3.3 Physicochemical Modeling
2.3.4 Approaches for Description of Diffusion
2.3.4.1 Maxwell-Stefan Approach
2.3.4.2 Calculation of Diffusion Coefficients
2.3.4.3 Thermodynamic Factor
2.3.4.4 Determination of Activity Coefficients
2.3.4.5 Proof of Principle
2.4 Model-Based Realization: Apparatus and Process Design
2.4.1 Quantification of Determining Factors
2.4.2 Proof of Principle – Process Optimization
2.4.3 Proof of Principle – Cost-Driven Decision
2.5 Extract Purification
2.5.1 Modeling Approaches
2.5.2 Scale-Up and Mini-plant
2.6 Total Process Development and Design
2.7 Conclusions and Summary
3 Tailor-Made Production of Plants for Green Extraction
Hansjoerg Hagels
3.1 Introduction
3.2 Sustainable Processes
3.2.1 Social Sustainability
3.2.2 Environmental Sustainability
3.2.3 Economic Sustainability
3.3 Production Technology
3.3.1 Choice of Cultivation Location
3.3.2 Crop Rotation
3.3.3 Fertilization
3.3.4 Organic Farming
3.4 Seed and Seed Stock
3.4.1 Breeding
3.4.2 Seed
3.4.3 Vegetative Propagation
3.4.4 Stock Maintenance
3.4.4.1 Diseases
3.4.5 Pests
3.4.5.1 Weed Control
3.4.6 Harvesting Technology
3.4.8 Mechanical Treatment
3.4.9 Thermal Treatment
3.4.9.1 Natural Drying
3.4.9.2 Artificial Drying
3.5 Quality Criteria
3.5.1 Quality Management
3.5.2 Quality Control
4 Mass Transfer Enhancement for Solid–Liquid Extractions
Simon Both, Jochen Strube, and Giancarlo Cravatto
4.1 Introduction
4.2 State of the Art Solid-Liquid Extraction
4.2.1 Batch Processes
4.2.2 Continuous Processes
4.2.3 Hydro- and Steam Distillation
4.2.4 Alembic Distillation
4.2.5 Mechanical Expression (Extrusion)
4.3 Enhancement of Solid–Liquid Extraction Processes
4.3.1 Microwave-Assisted Extraction (MAE)
4.3.2 Ultrasound-Assisted Extraction (UAE)
4.3.3 Turbo Extraction
4.4 Example Processes for Solid–Liquid Extraction Enhancement
4.4.1 Extraction of Polyphenols from Black Tea – Conventional and Ultrasound-Assisted Extraction
4.4.1.1 Material and Methods
4.4.1.2 Equipment Concepts
4.4.1.3 Equilibrium Line by Multistage Maceration and Total Extraction
4.4.1.4 Mass Transport Kinetics
4.4.1.5 Particle Size Distribution
4.4.1.6 SEM Measurements – Cell Disruption
4.4.1.7 Conclusions
4.4.2 Pilot Scale UAE of Clove Buds in Batch and Flow Reactors
4.4.2.1 Experimental Methods and Reactors
4.4.2.2 Results and Discussion
4.4.2.3 Conclusions
4.4.3 UAE and MAE of Lipids from Microalgae
4.4.3.1 Experimental Methods and Equipments
4.4.3.2 Conclusions
4.5 Conclusion
5 Fundamentals of Process-Intensification Strategy for Green Extraction Operations
Tamara Allaf and Karim Allaf
5.1 Process-Intensification Strategy PI-S from High Capacity to High Controlled Quality Industrial Manufacturing
5.2 What Does “Intensified Industrial Manufacturing” Mean?
5.2.1 Unit Operation Performance
5.2.2 Final Product Quality
5.2.3 Equipment Reliability
5.3 Intensification Strategy as a Pluridimensional Approach
5.3.1 Objectives of Intensification Strategy
5.3.2 Specific Case of Food Industry
5.3.3 PI-S as a Continual Progressing-Development Strategy
5.4 Fundamentals for Starting Basis Analyses
5.4.1 Intensification Procedure
5.4.1.1 Intensification Cycle
5.4.1.2 Multi-cycle Intensification Procedure
5.4.1.3 Intensification Charter
5.4.2 Specificities of Instant Controlled Pressure DIC Drop in Process Intensification Strategy PI-S
5.4.2.1 Introduction
5.4.2.2 Transfer Phenomena in Instantaneous Controlled Pressure Drop DIC Treatment
5.4.2.3 DIC – Texturing
5.4.3 Mass Transfer by Permeability
5.5 Processes of Extraction
5.5.1 Extraction of Volatile Compounds
5.5.1.1 Kinetics
5.5.1.2 Intensification of Essential Oil Extraction
5.5.2 Case of Solvent extraction
5.5.2.1 Introduction
5.5.2.2 Extraction Process Issues
5.5.2.3 Kinetic Modeling
5.5.3 Conclusion: Process Intensification Strategy: How to Use PI-S Solvent Extraction Processes?
5.6 Conclusion
6 Panorama of Sustainable Solvents for Green Extraction Processes
Iraj Koudous, Werner Kunz, and Jochen Strube
6.1 Introduction
6.2 Thermodynamic Models of Mixing and Dissolving
6.2.1 UNIFAC and Modified UNIFAC
6.2.2 The Hansen Solubility Parameters
6.2.3 COSMO and COSMO-RS
6.2.3.1 Example 1: Mutual Solubility of Acetone with Benzene, Chloroform, and Carbon disulfide
6.2.3.2 Example 2: Solubility Screening for Indigo
6.3 Solvent Selection for Green Solid–Liquid Extraction
6.3.1 General Green Solvent Ranking with COSMO-RS
6.3.2 Concrete Example: Solid–Liquid Extraction of Carnesol and Carnosic Acid from Sage
6.3.3 Experimental Validation of COSMO-RS Solvent Ranking
6.3.4 Conclusion
6.4 Alternative Solvents for Green Extraction
6.4.1 Ionic Liquids
6.4.2 Low-Transition-Temperature Mixtures and Deep Eutectic Solvents
6.4.3 Ionic Liquids Screening with COSMO-RS
6.5 Purification Strategies of Natural Products
6.5.1 Databased and Calculated Physicochemical Properties
6.5.2 Feed Characterization
6.5.2.1 Conceptual Process Design
6.5.2.2 Modeling Depths and Feed Characterization Approach
6.5.2.3 System 1: Vanillin
6.5.2.4 Potential Unit Operations for Product Purification
6.5.2.5 Data Evaluation
6.5.2.6 Model-Based Process Design and Calculation of Separation Costs
6.5.2.7 Separation Cost Estimation
6.5.2.8 System 2: Tea Aroma
6.5.2.9 Data for Potential Unit Operation
6.5.2.10 Process Design and Cost Estimation
6.5.2.11 Discussion and Conclusions
7 Water as Green Solvent for Extraction of Natural Products
Loïc Petigny, Mustafa Zafer Özel, Sandrine Périno, Joël Wajsman, and Farid Chemat
7.1 Introduction
7.2 Maceration
7.2.1 Principle and Process
7.2.2 Applications
7.3 Subcritical Water Extraction
7.3.1 Principle and Process
7.3.2 Applications
7.4 Enzymatic Assistance
7.4.1 Principles and Process
7.4.2 Applications
7.5 Micellar Extraction
7.5.1 Principle and Process
7.5.2 Applications
7.6 Hydrotropes
7.6.1 Principles and Process
7.6.2 Applications
7.7 Conclusion
8 Coverage Exploitation of By-Products from the Agrofood Industry
Carlos A. Ledesma-Escobar and María D. Luque de Castro
8.1 Introduction
8.2 Treatments for Safe Disposal/Exploitation of Agrofood Wastes or Residues
8.2.1 Physical Processes
8.2.2 Physicochemical Processes
8.2.3 Advanced Oxidation Processes
8.2.4 Thermal Processes
8.2.5 Biological Treatments
8.3 Exploitation of By-products from Olive Trees and Olive Oil Production
8.3.1 Generalities
8.3.2 Exploitation of Alpechín
8.3.3 Overall Use of Either Alperujo or Orujo
8.3.4 Partial Use of Either Alpechín or Alperujo
8.3.5 Olive Leaf Exploitation
8.3.6 Foreseeable/Desirable Future Uses of Olive Tree–Olive Oil Wastes
8.4 Exploitation of By-products from Vineyards and Wine Production
8.4.1 Generalities
8.4.2 Types and Characteristics of Vineyard Residues
8.4.3 Present and Potential Exploitation of Vineyard Residues
8.4.4 Types and Characteristics ofWine Residues
8.4.5 Present and Potential Exploitation of Wine Residues: Overall and Partial Exploitation
8.5 Exploitation of By-products from the Citrus Juice Industry
8.5.1 Generalities
8.5.2 Uses and Potential Applications of Bioactive Compounds from Citrus Residues
8.5.3 Potential Exploitation of Citrus Residues for Energy Production
8.5.4 Other Overall and Partial Uses of Citrus Residues
9 Selective Extraction from Food Plants and Residues by Pulsed Electric Field
Eugene Vorobiev and Nikolai Lebovka
9.1 Introduction
9.2 Basics of PEF-Assisted Extraction
9.3 Application of PEF for Different Food Plants and Residues
9.3.1 Sugar Beets
9.3.2 Red Beets
9.3.3 Chicory Roots
9.3.4 Apples
9.3.5 Grapes
9.3.6 Other Fruits and Vegetables
9.3.7 Egg Yolk
9.3.8 Bio-suspensions and Yeasts
9.3.9 Microalgae
9.3.10 Rhizomes
9.3.11 Bones
9.3.12 Eggshell
9.3.13 Leaves
9.3.14 Herbs
9.3.15 Ginseng
9.3.16 Peels
9.3.17 Mushrooms
9.3.18 Juices and Juice-Based Beverages
9.4 Conclusions
10 Green Extraction of Artemisinin from Artemisia annua L
Alexei A. Lapkin
10.1 Introduction
10.2 Extraction Technologies for Isolation of Artemisinin from A. annua
10.2.1 Industrial Extraction Processes
10.2.2 Cleaner and Intensified Processes for Extraction of Artemisinin
10.2.2.1 Innovative Process Conditions for Extraction
10.2.2.2 Alternative Solvents for Extraction of Artemisinin
10.3 Innovation in Artemisinin Purification
10.3.1 Hybrid Adsorption–Crystallization Separation
10.3.2 Column and HPLC Chromatography
10.3.3 Countercurrent Chromatography
10.4 Analysis of Artemisinin and Co-metabolites
10.5 Conclusions and OutlookPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=183165 Exemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy GENIAL Ingénierie Procédés Aliments - Construction de la qualité des Aliments par la chimie et les Procédés ENVIRONNEMENT-ENERGIE CHE 16.5 Papier 33004000617616 Consultable sur place Green food processing techniques : preservation, transformation and extraction (2019)
Titre : Green food processing techniques : preservation, transformation and extraction Type de document : texte imprimé Auteurs : Farid Chemat, Editeur scientifique ; Eugene Vorobiev, Editeur scientifique Editeur : London : Academic Press Année de publication : 2019 Importance : 1 vol. (XIX-562 p.) Présentation : ill., couv. ill. en coul. Format : 23 cm ISBN/ISSN/EAN : 978-0-12-815353-6 Note générale : Bibliogr. Index Langues : Anglais (eng) Catégories : Liste Plan de classement
16.14 (GENIE DES PROCEDES ALIMENTAIRES-TECHNOLOGIE ALIMENTAIRE) [Classement Massy]
RAMEAU
Ultrasons ; Extraction (chimie) ; Technologie haute pression ; Huiles végétales ; Séparation par membranes ; Extrusion ; Polyphénols ; Huiles essentielles ; Microondes ; Énergie solaire
Thésaurus Agro-alimentaire
EXTRACTION PAR FLUIDE SUPERCRITIQUE ; HOMOGENEISATION ; VAPEUR D'EAU ; ENCAPSULATIONRésumé : Green Food Processing Techniques: Preservation, Transformation and Extraction advances the ethics and practical objectives of "Green Food Processing" by offering a critical mass of research on a series of methodological and technological tools in innovative food processing techniques, along with their role in promoting the sustainable food industry. These techniques (such as microwave, ultrasound, pulse electric field, instant controlled pressure drop, supercritical fluid processing, extrusion…) lie on the frontier of food processing, food chemistry, and food microbiology, and are thus presented with tools to make preservation, transformation and extraction greener.
The Food Industry constantly needs to reshape and innovate itself in order to achieve the social, financial and environmental demands of the 21st century. Green Food Processing can respond to these challenges by enhancing shelf life and the nutritional quality of food products, while at the same time reducing energy use and unit operations for processing, eliminating wastes and byproducts, reducing water use in harvesting, washing and processing, and using naturally derived ingredients.Type de document : Livre Table des matières : 1. Green Food Processing: concepts, strategies and tools
1.1. Introduction
1.2. High hydrostatic pressure
1.3. Supercritical carbon dioxide
1.4. Electrotechnologies
1.5. Laser ablation and radiofrequency
1.6. Ultrasound
1.7. Microwaves
1.8. Nanotechnology
1.9. Solar energy
1.10. Challenges with experiential methodology, theory, and statistical calculations
1.11. Strategy, challenges, and perspectives
2. Ultrasound technology for processing, preservation and extraction
2.1. Ultrasound: principle and influencing factors
2.2. Ultrasound techniques
2.3. Applications
2.4. Comprehension of ultrasound-induced mechanisms
2.5. Future trends
3. Supercritical fluid processing and extraction of food
3.1. Introduction
3.2. Principle, procedures, and influencing factors
3.3. Application in extraction of food ingredients
3.4. Applications in transformation and processing of food
3.5. Applications in food preservation
3.6. Environmental impact
3.7. Upscaling and its application in industry
3.8. Future trends
3.9. Conclusion
4. High hydrostatic pressure processing of foods
4.1. Introduction
4.2. Fundamental principles of high pressure process
4.3. The effect of high pressure on food quality and safety attributes
4.4. High pressure technology in combination with other processes and hurdles
4.5. Industrial applications of high pressure
4.6. High pressure process design and evaluation
4.7. Economical and environmental aspects of high pressure application in the food industry
5. High pressure homogenization in food processing
5.1. Introduction
5.2. Dynamic high pressure principle and equipment
5.3. High pressure homogenization processing as greener extraction processing
5.4. Dynamic high pressure processing as greener submicron emulsion processing
5.5. Dynamic high pressure processing as greener preservation processing
5.6. Conclusion
6. Ohmic heating for preservation, transformation and extraction
6.1. Introduction
6.2. Food processing and preservation
6.3. Extraction of biocompounds
6.4. Future perspectives
7. Pressure hot water processing of food and natural products
7.1. Introduction
7.2. Fundamentals of pressurized hot water extraction
7.3. Instrumentation
7.4. Applications in the extraction of food ingredients from foods and natural products
7.5. Hydrolysis reactions during pressurized hot water extraction
7.6. Food quality and safety using pressurized hot water extraction
7.7. Environmental impact
7.8. Conclusions and future trends
8. Instant controlled pressure drop as a new intensification ways for vegetal oil extraction
8.1. Introduction
8.2. Phenomenological analysis and intensification ways of solvent extraction process
8.3. Material and method
8.4. Results and discussion
8.5. Conclusion
9. Membrane separation in food processing
9.1. Overview of membrane separation processes in food industry
9.2. Theoretical aspects in membrane separation
9.3. Membrane materials and modules
9.4. Membrane applications in food processing
9.5. Conclusion
10. Extrusion
10.1. Introduction
10.2. Extrusion cooking
10.3. Expression
10.4. Extraction
11. Gas-assisted oil expression from oilseeds
11.1. Introduction
11.2. Conventional extraction methods of seed and nut oils
11.3. Gas-assisted mechanical expression
11.4. Conclusion
12. Encapsulation technologies for polyphenol-loaded microparticles in food industry
12.1. Introduction
12.2. Matrices for polyphenol-loaded microparticles production and their application in food
12.3. Techniques for polyphenol-loaded microparticles production and applications
12.4. Conclusion
13. Essential oil for preserving foods
13.1. Extraction processes of essential oils: from tradition to innovation
13.2. Essential oils as antimicrobials
13.3. Essential oils as antioxidant agents in food products
13.4. Future trends
14. Pulsed light as a new treatment to maintain physical and nutritional quality of food
14.1. Introduction
14.2. Mode of action of pulsed and pulsed ultraviolet light
14.3. Advantages and disadvantages of high-intensity light pulses
14.4. Factors affecting interaction between high-intensity pulses and materials
14.5. Microbial inactivation mechanism
14.6. High-intensity light pulses for food preservation
14.7. Pulsed light effects on quality, enzymes, and functionality
14.8. Pulsed light sources and equipment
14.9. Conclusion
15. Pulsed electric field in green processing and preservation of food products
15.1. Introduction
15.2. Impact of pulsed electric field on cell tissue and biosuspensions
15.3. Food processing with pulsed electric field
15.4. Conclusion
16. Cold plasma for sustainable food production and processing
16.1. Introduction
16.2. Cold plasma fundamentals
16.3. Antimicrobial action of plasma species
16.4. In-package cold plasma: a dry, green, and resource-efficient process
16.5. Cold plasma for water treatment
16.6. Cold plasma for sustainable food production
16.7. Energy efficiency and process cost
16.8. Conclusion
17. Microwave technology for food applications
17.1. Introduction: approach adopted in this chapter
17.2. Principle, influencing factors, induced mechanisms
17.3. Techniques at laboratory and industrial scale
17.4. Pre- and postprocessing and coupling
17.5. Applications in transformation, food processing, and preservation
17.6. Applications in extraction of food ingredients
17.7. Environmental impact
17.8. Regulation and security
17.9. Upscaling and its applications in industry
17.10. Future trends
18. Solar as sustainable energy for processing, preservation, and extraction
18.1. Instrumentation
18.2. Solar energy in food process engineering
18.3. Solar extraction
18.4. Solar cooking
18.5. Solar drying systems
18.6. Solar pasteurization
18.7. Environmental impacts using solar energy
18.8. Hazard analysis and critical control points and hazard and operability considerations using solar energyPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=200515 Green food processing techniques : preservation, transformation and extraction [texte imprimé] / Farid Chemat, Editeur scientifique ; Eugene Vorobiev, Editeur scientifique . - London : Academic Press, 2019 . - 1 vol. (XIX-562 p.) : ill., couv. ill. en coul. ; 23 cm.
ISBN : 978-0-12-815353-6
Bibliogr. Index
Langues : Anglais (eng)
Catégories : Liste Plan de classement
16.14 (GENIE DES PROCEDES ALIMENTAIRES-TECHNOLOGIE ALIMENTAIRE) [Classement Massy]
RAMEAU
Ultrasons ; Extraction (chimie) ; Technologie haute pression ; Huiles végétales ; Séparation par membranes ; Extrusion ; Polyphénols ; Huiles essentielles ; Microondes ; Énergie solaire
Thésaurus Agro-alimentaire
EXTRACTION PAR FLUIDE SUPERCRITIQUE ; HOMOGENEISATION ; VAPEUR D'EAU ; ENCAPSULATIONRésumé : Green Food Processing Techniques: Preservation, Transformation and Extraction advances the ethics and practical objectives of "Green Food Processing" by offering a critical mass of research on a series of methodological and technological tools in innovative food processing techniques, along with their role in promoting the sustainable food industry. These techniques (such as microwave, ultrasound, pulse electric field, instant controlled pressure drop, supercritical fluid processing, extrusion…) lie on the frontier of food processing, food chemistry, and food microbiology, and are thus presented with tools to make preservation, transformation and extraction greener.
The Food Industry constantly needs to reshape and innovate itself in order to achieve the social, financial and environmental demands of the 21st century. Green Food Processing can respond to these challenges by enhancing shelf life and the nutritional quality of food products, while at the same time reducing energy use and unit operations for processing, eliminating wastes and byproducts, reducing water use in harvesting, washing and processing, and using naturally derived ingredients.Type de document : Livre Table des matières : 1. Green Food Processing: concepts, strategies and tools
1.1. Introduction
1.2. High hydrostatic pressure
1.3. Supercritical carbon dioxide
1.4. Electrotechnologies
1.5. Laser ablation and radiofrequency
1.6. Ultrasound
1.7. Microwaves
1.8. Nanotechnology
1.9. Solar energy
1.10. Challenges with experiential methodology, theory, and statistical calculations
1.11. Strategy, challenges, and perspectives
2. Ultrasound technology for processing, preservation and extraction
2.1. Ultrasound: principle and influencing factors
2.2. Ultrasound techniques
2.3. Applications
2.4. Comprehension of ultrasound-induced mechanisms
2.5. Future trends
3. Supercritical fluid processing and extraction of food
3.1. Introduction
3.2. Principle, procedures, and influencing factors
3.3. Application in extraction of food ingredients
3.4. Applications in transformation and processing of food
3.5. Applications in food preservation
3.6. Environmental impact
3.7. Upscaling and its application in industry
3.8. Future trends
3.9. Conclusion
4. High hydrostatic pressure processing of foods
4.1. Introduction
4.2. Fundamental principles of high pressure process
4.3. The effect of high pressure on food quality and safety attributes
4.4. High pressure technology in combination with other processes and hurdles
4.5. Industrial applications of high pressure
4.6. High pressure process design and evaluation
4.7. Economical and environmental aspects of high pressure application in the food industry
5. High pressure homogenization in food processing
5.1. Introduction
5.2. Dynamic high pressure principle and equipment
5.3. High pressure homogenization processing as greener extraction processing
5.4. Dynamic high pressure processing as greener submicron emulsion processing
5.5. Dynamic high pressure processing as greener preservation processing
5.6. Conclusion
6. Ohmic heating for preservation, transformation and extraction
6.1. Introduction
6.2. Food processing and preservation
6.3. Extraction of biocompounds
6.4. Future perspectives
7. Pressure hot water processing of food and natural products
7.1. Introduction
7.2. Fundamentals of pressurized hot water extraction
7.3. Instrumentation
7.4. Applications in the extraction of food ingredients from foods and natural products
7.5. Hydrolysis reactions during pressurized hot water extraction
7.6. Food quality and safety using pressurized hot water extraction
7.7. Environmental impact
7.8. Conclusions and future trends
8. Instant controlled pressure drop as a new intensification ways for vegetal oil extraction
8.1. Introduction
8.2. Phenomenological analysis and intensification ways of solvent extraction process
8.3. Material and method
8.4. Results and discussion
8.5. Conclusion
9. Membrane separation in food processing
9.1. Overview of membrane separation processes in food industry
9.2. Theoretical aspects in membrane separation
9.3. Membrane materials and modules
9.4. Membrane applications in food processing
9.5. Conclusion
10. Extrusion
10.1. Introduction
10.2. Extrusion cooking
10.3. Expression
10.4. Extraction
11. Gas-assisted oil expression from oilseeds
11.1. Introduction
11.2. Conventional extraction methods of seed and nut oils
11.3. Gas-assisted mechanical expression
11.4. Conclusion
12. Encapsulation technologies for polyphenol-loaded microparticles in food industry
12.1. Introduction
12.2. Matrices for polyphenol-loaded microparticles production and their application in food
12.3. Techniques for polyphenol-loaded microparticles production and applications
12.4. Conclusion
13. Essential oil for preserving foods
13.1. Extraction processes of essential oils: from tradition to innovation
13.2. Essential oils as antimicrobials
13.3. Essential oils as antioxidant agents in food products
13.4. Future trends
14. Pulsed light as a new treatment to maintain physical and nutritional quality of food
14.1. Introduction
14.2. Mode of action of pulsed and pulsed ultraviolet light
14.3. Advantages and disadvantages of high-intensity light pulses
14.4. Factors affecting interaction between high-intensity pulses and materials
14.5. Microbial inactivation mechanism
14.6. High-intensity light pulses for food preservation
14.7. Pulsed light effects on quality, enzymes, and functionality
14.8. Pulsed light sources and equipment
14.9. Conclusion
15. Pulsed electric field in green processing and preservation of food products
15.1. Introduction
15.2. Impact of pulsed electric field on cell tissue and biosuspensions
15.3. Food processing with pulsed electric field
15.4. Conclusion
16. Cold plasma for sustainable food production and processing
16.1. Introduction
16.2. Cold plasma fundamentals
16.3. Antimicrobial action of plasma species
16.4. In-package cold plasma: a dry, green, and resource-efficient process
16.5. Cold plasma for water treatment
16.6. Cold plasma for sustainable food production
16.7. Energy efficiency and process cost
16.8. Conclusion
17. Microwave technology for food applications
17.1. Introduction: approach adopted in this chapter
17.2. Principle, influencing factors, induced mechanisms
17.3. Techniques at laboratory and industrial scale
17.4. Pre- and postprocessing and coupling
17.5. Applications in transformation, food processing, and preservation
17.6. Applications in extraction of food ingredients
17.7. Environmental impact
17.8. Regulation and security
17.9. Upscaling and its applications in industry
17.10. Future trends
18. Solar as sustainable energy for processing, preservation, and extraction
18.1. Instrumentation
18.2. Solar energy in food process engineering
18.3. Solar extraction
18.4. Solar cooking
18.5. Solar drying systems
18.6. Solar pasteurization
18.7. Environmental impacts using solar energy
18.8. Hazard analysis and critical control points and hazard and operability considerations using solar energyPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=200515 Réservation
Réserver ce documentExemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Bibliothèque OPERATIONS UNITAIRES CHE 16.14 Papier 33004001027625 Empruntable