l-Size, Shape, Volume, and Related Physical Attributes
Summary
1.1 Size
1.2 Shape
1.3 Particle Size Distribution
1.4 Volume
1.4.1 Liquid Displacement Method
1.4.2 Gas Displacement Method
1.4.3 Solid Displacement Method
1.4.4 Expressions of Volume
1.5 Density
1.6 Porosity
1.7 Determination of Volume of Different Kinds of Pores
1.8 Shrinkage
Problems
References
2-Rheological Propert[...]
l-Size, Shape, Volume, and Related Physical Attributes
Summary
1.1 Size
1.2 Shape
1.3 Particle Size Distribution
1.4 Volume
1.4.1 Liquid Displacement Method
1.4.2 Gas Displacement Method
1.4.3 Solid Displacement Method
1.4.4 Expressions of Volume
1.5 Density
1.6 Porosity
1.7 Determination of Volume of Different Kinds of Pores
1.8 Shrinkage
Problems
References
2-Rheological Properties of Foods
Summary
2.1 Introduction to Rheology
2.2 Flow of Material
2.2.1 Newton's Law of Viscosity
2.2.2 Viscous Fluids
2.2.2.1 Newtonian Fluids
2.2.2.2 Non-Newtonian Fluids
2.2.3 Plastic Fluids
2.2.3.1 Bingham Plastic Fluids
2.2.3.2 Non-Bingham Plastic Fluids
2.2.4 Time Dependency
2.2.5 Solution Viscosity
2.3 Viscosity Measurement
2.3.1 Capillary Flow Viscometers
2.3.2 Orifice Type Viscometers
2.3.3 Falling BalI Viscometers
2.3.4 Rotational Viscometers
2.3.4.1 Concentric Cylinder (Coaxial Rotational)
Viscometers
2.3.4.2 Cone and Plate Viscometers
2.3.4.3 Parallel Plate Viscometers
2.3.4.4 Single-Spindle Viscometers (Brookfield Viscometer)
2.3.5 Other Types of Viscometers
2.3.5.1 Vibrational (Oscillation) Viscometer
2.3.5.2 Bostwick Consistometer
2.4 Deformation of Material
2.5 Viscoelastic Behavior
2.5.1 Stress Relaxation Test
2.5.2 Creep Test
2.5.3 Dynamic Test (Oscillatory Test)
2.6 Extensional Flow
2.7 Mechanical Models
2.7.1 Elastic (Spring) Model
2.7.2 Viscous (Dashpot) Model
2.7.3 Combination Models
2.7.3.1 Maxwell Model
2.7.3.2 Kelvin-Voigt Model
2.7.3.3 Burger Model
2.8 Texture of Foods
2.8.1 Compression
2.8.2 Snapping-Bending
2.8.3 Cutting Shear
2.8.4 Puncture
2.8.5 Penetration
2.8.6 Texture Profile Analysis
2.9 Dough Testing Instruments
2.9.1 Farinograph and Mixograph
2.9.2 Extensograph and Alveograph
2.9.3 Amylograph
Problems
References
3- Thermal Properties of Foods
Summary
3.1 Fourier's Law of Heat Conduction
3.2 Thermal Conductivity
3.2.1 Prediction of Thermal Conductivity
3.2.1.1 Parallel Model
3.2.1.2 Series (Perpendicular) Model
3.2.1.3 Krischer Model
3.2.1.4 Maxwell-Eucken Model
3.2.1.5 Kopelman Model
3.2.1.6 Improved Thermal Conductivity Prediction Models
3.2.2 Measurement of Thermal Conductivity
3.2.2.1 Steady State Methods
3.2.2.2 Unsteady-State Methods
3.3 Specific Heat
3.3.1 Prediction of Specific Heat
3.3.2 Measurement of Specific Heat
3.3.2.1 Method of Mixture
3.3.2.2 Method of Guarded Plate
3.3.2.3 Method of Comparison Calorimeter
3.3.2.4 Adiabatic Agricultural Calorimeter
3.3.2.5 Differential Scanning Calorimeter (DSC)
3.3.2.6 Method of Calculated Specific Heat
3.4 Enthalpy and Latent Heat
3.5 Thermal Diffusivity
3.5.1 Indirect Prediction Method
3.5.2 Direct Measurement Methods
3.5.2.1 The Temperature History Method
3.5.2.2 Thermal Conductivity Probe
3.5.2.3 Dickerson Method
Problems
References
4-Electromagnetic Properties
Summary
4.1 Interaction of Objects with Light
4.2 Color
4.2.1 Color Measuring Equipments
4.2.1.1 Spectrophotometers
4.2.1.2 Colorimeters
4.2.2 Color Order Systems
4.2.2.1 Munsell Color System
4.2.2.2 CIE Color System
4.2.2.3 CIE L*a*b* (CIELAB) Color Spaces
4.2.2.4 Hunter Lab Color Space
4.2.2.5 Lovibond System
4.2.3 Color Differences
4.3 Dielectric Properties of Foods
4.3.1 Basic Principles of Microwave Heating
4.3.1.1 Ionic Interaction (Ionic Conduction)
4.3.1.2 Dipolar Rotation
4.3.2 Definition of Dielectric Properties
4.3.3 Effects of Moisture Content on Dielectric Properties
4.3.4 Effects of Temperature on Dielectric Properties
4.3.5 Effects of Composition of Foods on Dielectric Properties
4.3.5.1 Dielectric Properties of Salt Solutions
4.3.5.2 Dielectric Properties of Carbohydrate
4.3.5.3 Dielectric Properties of Proteins
4.3.5.4 Dielectric Properties of Fat
4.3.6 Assessment of Quality of Foods by Using Dielectric Properties
4.3.7 Measurement of Dielectric Properties
References
5-Water Activity and Sorption Properties of Foods
Summary
5.1 Criteria of Equilibrium
5.2 Ideal Solution-Raoult's Law
5.3 Henry's Law
5.4 Colligative Properties
5.4.1 Boiling Point Elevation
5.4.2 Freezing Point Depression
5.4.3 Osmotic Pressure
5.5 Equilibria in Nonideal Systems-Fugacity and Activity
5.6 Water Activity
5.7 Prediction of Water Activity
5.8 Water Activity Measurement Methods
5.8.1 Measurements Based on Colligative Properties
5.8.1.1 Water Activity Determination by Vapor Pressure Measurement
5.8.1.2 Water Activity Determination by Freezing Point Depression
5.8.2 Measurements Based on Isopiestic Transfer
5.8.3 Measurements Using Hygrometers
5.8.4 Measurements Based on Hygroscopicity of Salts
5.9 Effects of Temperature on Water Activity
5.10 Effects of Pressure on Water Activity
5.11 Adjustment of Water Activity and Preparation of Moisture Sorption Isotherms
5.11.1 Hysteresis
5.11.2 Isotherm Models
Problems
References
6-Surface Properties of Foods
Summary
6.1 Surface Tension
6.2 Laplace Equation
6.3 Kelvin Equation
6.4 Surface Activity
6.5 Interfacial Tension
6.6 Young and Dupre' Equations
6.7 Colloidal Systems in Foods
6.7.1 Sols
6.7.2 Gels
6.7.3 Emulsions
6.7.4 Foams
6.8 Measurement of Contact Angle and Surface Tension
6.8.1 Contact Angle Measurement Methods
6.8.2 Surface Tension Measurement Methods
Problems
References
Index
+
-