Adresse
Infodoc : Réseau des bibliothèques et centres de documentation d'AgroParisTechFrance
contact
Array ( [TITRE] => <b>Type de document : </b> [TITRE_CLEAN] => Type de document [OPAC_SHOW] => 1 [TYPE] => list [AFF] => Tiré à part [ID] => 4 [NAME] => cp_typdoc [DATATYPE] => integer [VALUES] => Array ( [0] => 7 ) )
Titre : |
Characterization and propagation of acoustic emission signals in woody plants : towards and improved acoustic emission counter
|
Auteur(s) : |
Melvin T. Tyree, Auteur (et co-auteur)
J.S. Sperry, Auteur (et co-auteur) |
Type de document : | Tiré à part |
Sujets : | Acer saccharum ; Thuja occidentalis ; Pinus strobus |
Résumé : |
The physics of ultrasonic acoustic emissions (AEs) was investigated for AE transmission through wood and transducers. The physical properties measured were velocity, attenuation and frequency composition of AEs produced by two sources: cavitation events in xylem and pencil lead breaks. The authors also measured the relative sensitivity of various combinations of ultrasound transducers and amplifiers to aid in the selection of a measuring system optimized for cavitation detection in woody plants. Some of the authors' conclusions are: (1) Softwoods (Thuja, Pinus) attenuate AEs more rapidly than hardwoods (maple, birch). (2) The velocity of AEs in wood exceeds that measured by others in water so the main medium of AE transmission must be the cellulose. (3) The strongest frequencies of AE[...] The physics of ultrasonic acoustic emissions (AEs) was investigated for AE transmission through wood and transducers. The physical properties measured were velocity, attenuation and frequency composition of AEs produced by two sources: cavitation events in xylem and pencil lead breaks. The authors also measured the relative sensitivity of various combinations of ultrasound transducers and amplifiers to aid in the selection of a measuring system optimized for cavitation detection in woody plants. Some of the authors' conclusions are: (1) Softwoods (Thuja, Pinus) attenuate AEs more rapidly than hardwoods (maple, birch). (2) The velocity of AEs in wood exceeds that measured by others in water so the main medium of AE transmission must be the cellulose. (3) The strongest frequencies of AEs are in the range of 100–300 kHz. (4) Cavitation-induced AEs tend to shift to higher frequency as wood dehydration progresses. (5) One cannot determine the locus of origin of AEs from its frequency composition. (6) The frequency composition of the acoustic emissions probably cannot be determined at all with the sensors used because of their tendency to ‘ring’. The data collected in this paper were used to aid in the design of an improved AE counter having a seven-fold increase in signal to noise ratio compared to counters previously used in our laboratory. The improved counter, model 4615 Drought Stress Monitor, is now commercially available from Physical Acoustics Corp., Princeton, NJ, U.S.A. |
Date de publication : | 1989 |
Format : | pp. 371-382 / graph., tabl., réf., Annexes. |
Note(s) : |
Extrait de Plant, Cell & Environment - Vol.12 - n°4 |
Langue(s) : | Anglais |
Lien vers la notice : | https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=150143 |
Exemplaires (1)
Localisation | Emplacement | Pôle | Section | Cote | Support | Disponibilité |
---|---|---|---|---|---|---|
Kourou | Archives | AgroParisTech-Kourou | TP7069 | Papier Périodique | Empruntable Disponible |