Catégories
Thésaurus Agro-alimentaire , PHYSIQUE , PARAMETRE PHYSIQUE , DENSITE
DENSITESynonyme(s)POIDS SPECIFIQUE |



Exemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Bibliothèque INDUSTRIES ALIMENTAIRES ET COSMETIQUES-FILIERES SID 18.3 Papier 33004000543119 Empruntable sous conditions
Titre : Chemical calculations. Type de document : texte imprimé Auteurs : Harold Victor Anderson Mention d'édition : 6e éd. Editeur : NEW YORK : MacGraw Hill Book Company, Inc. Année de publication : 1955 Importance : 305 p. Note générale : Annexes
Illustrations
IndexLangues : Anglais (eng) Catégories : Thésaurus Agro-alimentaire
CHIMIE ; PHYSIQUE ; DENSITE ; POIDS MOLECULAIRE ; GAZ ; OXYDATION ; TEMPERATURE ; REACTION CHIMIQUE ; OXYDOREDUCTION
Liste Plan de classement
4.1 (CHIMIE) [Classement Massy]Type de document : Livre Permalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=56259 Chemical calculations. [texte imprimé] / Harold Victor Anderson . - 6e éd. . - NEW YORK : MacGraw Hill Book Company, Inc., 1955 . - 305 p.
Annexes
Illustrations
Index
Langues : Anglais (eng)
Catégories : Thésaurus Agro-alimentaire
CHIMIE ; PHYSIQUE ; DENSITE ; POIDS MOLECULAIRE ; GAZ ; OXYDATION ; TEMPERATURE ; REACTION CHIMIQUE ; OXYDOREDUCTION
Liste Plan de classement
4.1 (CHIMIE) [Classement Massy]Type de document : Livre Permalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=56259 Exemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Bibliothèque CHIMIE-BIOCHIMIE-BIOPHYSIQUE AND 4.1 Papier 33004000474661 Empruntable sous conditions Edible oil processing (2013)
Titre : Edible oil processing Type de document : texte imprimé Auteurs : Wolf Hamm, Editeur scientifique ; Richard J. Hamilton, Editeur scientifique ; Gijs Calliauw, Editeur scientifique Editeur : Chichester : Wiley-Blackwell Année de publication : 2013 Importance : 1 vol. (XIX-322 p.) Présentation : ill., couv. ill. en coul. Format : 25 cm ISBN/ISSN/EAN : 978-1-4443-3684-9 Note générale : Bibliogr. Index Langues : Anglais (eng) Catégories : Liste Plan de classement
18.9 (CORPS GRAS) [Classement Massy]
Thésaurus Agro-alimentaire
HUILE ; FABRICATION ; RAFFINAGE ; GENIE ENZYMATIQUE ; SECURITE ; CONTROLE DE QUALITE ; ASSURANCE QUALITE ; ACIDE GRAS ; PHOSPHATIDE ; STEROL ; COMPOSE PHENOLIQUE ; CHLOROPHYLLE ; CAROTENOIDE ; DENSITE ; VISCOSITE ; OXYDATION ; ANTIOXYGENE ; HYDROLYSE ; TRANSPORT ; GRAINE ; STOCKAGE ; SOJA ; GRAINE DE COLZA ; TOURNESOL ; OLIVE ; EXTRACTION PAR SOLVANT ; FRACTIONNEMENT ; EMULSION ; TECHNIQUE ANALYTIQUE ; AGENT DE CONTAMINATIONRésumé : Oils and fats are almost ubiquitous in food processing, whether naturally occurring in foods or added as ingredients that bring functional benefits. Whilst levels of fat intake must be controlled in order to avoid obesity and other health problems, it remains the fact that fats (along with proteins and carbohydrates) are one of the three macronutrients and therefore an essential part of a healthy diet.
The ability to process oils and fats to make them acceptable as part of our food supplies is a key component in our overall knowledge of them. Without this ability, the food that we consume would be totally different, and much of the flexibility available to us as a result of the application of processing techniques would be lost. Obviously we need to know how to process fatty oils, but we also need to know how best to use them once they have been processed.
This second edition of Edible Oil Processing presents a valuable overview of the technology and applications behind the subject.
It covers the latest technologies which address new environmental and nutritional requirements as well as the current state of world edible oil markets.Type de document : Livre Table des matières : 1 Composition and Properties of Edible Oils
1.1 Introduction
1.2 Components of natural fats
1.2.1 Fatty acids and glycerol esters
1.2.2 Phospholipids
1.2.3 Sterols
1.2.4 Tocols and other phenolic compounds
1.2.5 Chlorophyll
1.2.6 Hydrocarbons
1.2.6.1 Alkanes
1.2.6.2 Squalene
1.2.6.3 Carotenes
1.2.6.4 Polycyclic aromatic hydrocarbons
1.2.6.5 Contaminants and specifications
1.3 Fatty acid composition
1.4 Physical properties
1.4.1 Polymorphism, crystal structure and melting point
1.4.2 Density
1.4.3 Viscosity
1.4.4 Refractive index
1.4.5 Solubility of gases in oils
1.4.6 Other physical properties
1.5 Chemical properties
1.5.1 Hydrogenation
1.5.2 Oxidation
1.5.3 Autoxidation
1.5.4 Photooxidation
1.5.5 Decomposition of hydroperoxides to short-chain compounds
1.5.6 Antioxidants
1.5.6.1 Primary antioxidants
1.5.6.2 Secondary antioxidants
1.5.7 Stereomutation
1.5.8 Double-bond migration and cyclisation
1.5.9 Hydrolysis
1.5.10 Ester formation
1.5.11 Methanolysis
1.5.12 Glycerolysis
1.5.13 Interesterification
1.6 Effect of processing on food oil components
2 Bulk Movement of Edible Oils
2.1 Oil production and exports
2.2 Cargo damage
2.3 Quality of oils shipped
2.3.1 Palm oil
2.3.2 Soybean oil and other seed oils
2.3.3 Shipment of oils intended for production of FAMEs
2.4 Codex Alimentarius
2.5 Oil shipments: systems and regulations
2.5.1 The parcel tanker
2.5.2 Parcel tanker categories: IMO classification
2.5.3 Trade regulation: the role of the FOSFA and NIOP
2.6 Shore storage
2.7 Movement and storage costs
2.8 Refinery location
3 Production of Oils
3.1 Introduction
3.2 Seed handling and storage
3.2.1 Seed arrival
3.2.1.1 Seed weighing
3.2.1.2 Sampling
3.2.2 Seed reception and precleaning
3.2.3 Storage
3.3 Preparation of oilseeds
3.3.1 Reason for and purpose of preparation
3.3.2 Milling defect
3.4 Preparation of soybean
3.4.1 Cleaning and weighing
3.4.2 Cracking
3.4.3 Cooking–conditioning
3.4.4 Flaking
3.4.5 Expander
3.4.6 Soybean dehulling
3.4.6.1 Traditional process
3.4.6.2 Hot dehulling process
3.5 Preparation and pressing of rapeseed (canola)
3.5.1 Preparation
3.5.2 Cooking
3.5.3 Mechanical pressing
3.5.4 Press oil clarification
3.5.5 Press cake treatment
3.6 Preparation and pressing of sunflower seed
3.7 Full pressing
3.7.1 Cold pressing
3.7.2 Double pressing
3.7.3 Cake treatment
3.8 Oil from other seeds
3.8.1 Cottonseed
3.8.2 Corn germ
3.8.3 Coconut or copra oil
3.8.4 Linseed (flaxseed)
3.8.5 Safflower
3.8.6 Peanut (groundnut)
3.8.7 Rice bran
3.8.8 Sesame seed
3.9 Olive oil production
3.9.1 Pressing
3.9.2 Centrifugation
3.9.3 Olive pomace extraction
3.10 Palm oil production
3.10.1 Before reaching the mill
3.10.2 Sterilisation
3.10.3 Threshing
3.10.4 Pressing
3.10.5 Crude oil clarification
3.10.6 Oil drying
3.10.7 Fibre–fruit separation
3.10.8 Nut conditioning
3.10.9 Nut cracking installation
3.10.10 Kernel separation
3.10.11 Uses of secondary palm fruit products
3.10.11.1 Palm kernel meal
3.10.11.2 Fibres and shell
4 Solvent Extraction
4.1 Introduction
4.2 Solvent extractor
4.2.1 Contact time
4.2.2 Particle thickness
4.2.3 Extractor temperature
4.2.4 Miscella flux rate
4.2.5 Number of miscella stages
4.2.6 Solvent retention
4.3 Meal desolventiser toaster
4.3.1 Predesolventising trays
4.3.2 Countercurrent trays
4.3.3 Sparge tray
4.4 Meal dryer cooler
4.4.1 Steam-drying trays
4.4.2 Air-drying trays
4.4.3 Air-cooling trays
4.5 Miscella distillation system
4.6 Solvent recovery system
4.7 Heat recovery
5 Edible Oil Refining: Current and Future Technologies
5.1 Introduction
5.2 Next-generation chemical refining with nanoneutralisation
5.3 Enzymatic degumming: a missing link in the physical refining of soft oils?
5.4 Bleaching: from single-stage colour removal to multistage adsorptive purification
5.5 Deodorisation: much more than just a process for the removal of off-flavours
5.6 Short-path distillation and supercritical processing: refining technologies for the future?
6 Oil Modification Processes
6.1 Introduction
6.2 Hydrogenation
6.2.1 Historical perspective
6.2.2 Principle
6.2.3 Process parameters
6.2.3.1 Hydrogen pressure
6.2.3.2 Temperature
6.2.3.3 Catalyst
6.2.4 Process design
6.2.5 Future for hydrogenation technology
6.2.5.1 Smarter combinations of the conventional technology
6.2.5.2 Alternative catalysts
6.2.5.3 Advanced process technology
6.2.5.4 Summary
6.3 Interesterification
6.3.1 Historical perspective
6.3.2 Principle
6.3.3 Process parameters
6.3.3.1 Oil quality
6.3.3.2 Catalyst
6.3.3.3 Oil losses
6.3.4 Process design
6.3.4.1 Processed product quality
6.3.5 Future for interesterification technology
6.4 Dry fractionation
6.4.1 Historical perspective
6.4.2 Principle
6.4.3 Process parameters
6.4.3.1 Cooling speed
6.4.3.2 Agitation
6.4.4 Process design
6.4.4.1 Crystalliser design
6.4.4.2 Filter design
6.4.4.3 Plant design
6.4.5 Future for fractionation technology
6.4.5.1 Optimised crystalliser designs
6.4.5.2 High-pressure filtrations
6.4.5.3 Continuous fractional crystallisation
6.4.5.4 Alternative multistage processes for specialty fats production
6.4.6 Summary
7 Enzyme Processing
7.1 Introduction
7.1.1 Objectives of enzyme processing
7.2 Enzyme applications before oil refining
7.2.1 Enzyme-assisted pressing
7.2.2 Enzymatic degumming
7.2.3 Enzymatic degumming process (phospholipase A1)
7.2.4 Other phospholipases
7.2.5 Oil recovery from gums
7.2.6 Oil remediation
7.3 Applications within edible oil modification
7.3.1 Industrial-scale enzymatic interesterification
7.3.2 Factors influencing enzyme working life
7.3.3 Formulating with interesterified oils and fats
7.3.4 Enzyme reactions for speciality fats
7.3.5 Production of fats high in omega-3 fatty acids
7.4 Improving processing sustainability through enzyme usage
8 Application of Edible Oils
8.1 Introduction
8.2 Physical chemistry of triacylglycerides
8.3 Fat crystal networks
8.4 Design of functional TAG compositions
8.5 Application in fat-continuous emulsions (spreads)
8.6 Application in water-continuous emulsions
8.6.1 Mayonnaise and dressings
8.6.2 Nondairy (fat) creams and spreads
8.6.3 Ice cream
8.7 Application in other fat-continuous products
8.7.1 Baking fats
8.7.2 Chocolate
8.8 Conclusion
9 Quality and Food Safety Assurance and Control
9.1 Introduction
9.2 Analytical methods for measuring oil and fat composition
9.3 Quality analyses
9.3.1 Free fatty acids
9.3.2 Peroxides
9.3.3 Phosphorus
9.3.4 Moisture and dirt
9.3.5 Colour
9.3.6 Metals
9.3.7 Deterioration of Bleachability Index
9.3.8 Tocopherols
9.4 Supply chain contaminants
9.4.1 Polycyclic aromatic hydrocarbons
9.4.2 Pesticide residues
9.4.3 Hydrocarbons of mineral origin
9.4.4 Mycotoxins
9.4.5 Other contaminants
9.5 Quality and food safety assurance
9.5.1 Crude oil analyses
9.5.2 Crude oil risk matrix
9.5.3 Process validation contaminant removal
9.5.4 Oil processing link tables
9.5.5 Food safety control points
10 Oil Processing Design Basics
10.1 Introduction
10.2 Refining and modification process routes for most common oil types
10.2.1 Process step definitions
10.2.1.1 Degumming or water degumming (degummed)
10.2.1.2 Deep degumming (ddg)
10.2.1.3 Neutralisation (n)
10.2.1.4 One-step bleaching (osb)
10.2.1.5 Two-step bleaching (tsb)
10.2.1.6 Deodorisation (d)
10.2.1.7 Deodorisation/stripping (ds)
10.2.1.8 Hydrogenation (h)
10.2.1.9 Interesterification (ie)
10.2.1.10 Dewaxing/winterisation (wi)
10.2.1.11 Dry fractionation (df)
10.2.1.12 Soapstock splitting (ss)
10.2.2 Process routes for straight refined oils and fats
10.2.3 Process routes pre- and post-hydrogenation
10.2.4 Process routes pre- and post-IEC
10.2.5 Process routes pre- and post-IEE
10.2.6 Process routes in dry fractionation and dewaxing
10.3 Oil processing block diagram design
10.3.1 Standard oil processing block diagrams
10.3.2 Batch and continuous processes
10.3.2.1 Batch processes
10.3.2.2 Continuous processes
10.3.3 Refining of straight oils and fats
10.3.3.1 Chemical refining
10.3.3.2 Physical refining
10.3.4 Refining combined with hydrogenation
10.3.5 Refining combined with interesterification
10.3.6 Refining and dewaxing
10.3.7 Refining and fractionation
10.3.8 Production of trans-free hard fats
10.4 Effective equipment capacity
10.4.1 Example: calculation of effective times for 5- and 7-days-a-week operations
10.4.1.1 5 days a week
10.4.1.2 7 days a week
10.5 Tank park design rules
10.5.1 Storage capacity
10.5.2 Degradation during storage
10.5.2.1 Hydrolysis
10.5.2.2 Oxidation
10.5.2.3 Intermixing with other oils
10.5.2.4 Contamination by chemicals or impurities
10.5.3 Tank design rules
10.5.3.1 Tank shape and material of construction
10.5.3.2 Tank heating
10.5.3.3 Tank insulation
10.5.3.4 Avoiding air contact
10.5.4 Piping design rules
10.5.4.1 Materials
10.5.4.2 Insulation and heating
10.5.4.3 Layout
10.6 Design estimates for utilities consumptions and effluent production
10.6.1 Introduction
10.6.2 Utilities
10.6.2.1 Heating
10.6.2.2 Open steam and vacuum
10.6.2.3 Electrical energy
10.6.2.4 Cooling water
10.6.2.5 Gases
10.6.3 Effluent
10.6.3.1 Liquid effluent
10.6.3.2 Solid waste
10.6.3.3 Exhaust gases
10.6.4 Utility consumption and effluent data per process
10.6.4.1 Storage
10.6.4.2 Refining processes
10.6.4.3 Modification processes
10.7 Occupational safety by design
10.7.1 Introduction
10.7.2 General hazards
10.7.3 Main occupational hazards of oil refining
10.7.3.1 Neutralisation and soapsplitting
10.7.3.2 Autoignition of spent bleaching earth
10.7.3.3 Deodoriser safety
10.7.4 Main occupational hazards of oil modification
10.7.4.1 Hydrogenation safety hazards
10.7.4.2 Safety of IEC
10.7.5 Main occupational hazards of oil storage and handling
10.7.5.1 Access to tanks and processing vessels
10.7.5.2 Top access to tank carsPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=166406 Edible oil processing [texte imprimé] / Wolf Hamm, Editeur scientifique ; Richard J. Hamilton, Editeur scientifique ; Gijs Calliauw, Editeur scientifique . - Chichester : Wiley-Blackwell, 2013 . - 1 vol. (XIX-322 p.) : ill., couv. ill. en coul. ; 25 cm.
ISBN : 978-1-4443-3684-9
Bibliogr. Index
Langues : Anglais (eng)
Catégories : Liste Plan de classement
18.9 (CORPS GRAS) [Classement Massy]
Thésaurus Agro-alimentaire
HUILE ; FABRICATION ; RAFFINAGE ; GENIE ENZYMATIQUE ; SECURITE ; CONTROLE DE QUALITE ; ASSURANCE QUALITE ; ACIDE GRAS ; PHOSPHATIDE ; STEROL ; COMPOSE PHENOLIQUE ; CHLOROPHYLLE ; CAROTENOIDE ; DENSITE ; VISCOSITE ; OXYDATION ; ANTIOXYGENE ; HYDROLYSE ; TRANSPORT ; GRAINE ; STOCKAGE ; SOJA ; GRAINE DE COLZA ; TOURNESOL ; OLIVE ; EXTRACTION PAR SOLVANT ; FRACTIONNEMENT ; EMULSION ; TECHNIQUE ANALYTIQUE ; AGENT DE CONTAMINATIONRésumé : Oils and fats are almost ubiquitous in food processing, whether naturally occurring in foods or added as ingredients that bring functional benefits. Whilst levels of fat intake must be controlled in order to avoid obesity and other health problems, it remains the fact that fats (along with proteins and carbohydrates) are one of the three macronutrients and therefore an essential part of a healthy diet.
The ability to process oils and fats to make them acceptable as part of our food supplies is a key component in our overall knowledge of them. Without this ability, the food that we consume would be totally different, and much of the flexibility available to us as a result of the application of processing techniques would be lost. Obviously we need to know how to process fatty oils, but we also need to know how best to use them once they have been processed.
This second edition of Edible Oil Processing presents a valuable overview of the technology and applications behind the subject.
It covers the latest technologies which address new environmental and nutritional requirements as well as the current state of world edible oil markets.Type de document : Livre Table des matières : 1 Composition and Properties of Edible Oils
1.1 Introduction
1.2 Components of natural fats
1.2.1 Fatty acids and glycerol esters
1.2.2 Phospholipids
1.2.3 Sterols
1.2.4 Tocols and other phenolic compounds
1.2.5 Chlorophyll
1.2.6 Hydrocarbons
1.2.6.1 Alkanes
1.2.6.2 Squalene
1.2.6.3 Carotenes
1.2.6.4 Polycyclic aromatic hydrocarbons
1.2.6.5 Contaminants and specifications
1.3 Fatty acid composition
1.4 Physical properties
1.4.1 Polymorphism, crystal structure and melting point
1.4.2 Density
1.4.3 Viscosity
1.4.4 Refractive index
1.4.5 Solubility of gases in oils
1.4.6 Other physical properties
1.5 Chemical properties
1.5.1 Hydrogenation
1.5.2 Oxidation
1.5.3 Autoxidation
1.5.4 Photooxidation
1.5.5 Decomposition of hydroperoxides to short-chain compounds
1.5.6 Antioxidants
1.5.6.1 Primary antioxidants
1.5.6.2 Secondary antioxidants
1.5.7 Stereomutation
1.5.8 Double-bond migration and cyclisation
1.5.9 Hydrolysis
1.5.10 Ester formation
1.5.11 Methanolysis
1.5.12 Glycerolysis
1.5.13 Interesterification
1.6 Effect of processing on food oil components
2 Bulk Movement of Edible Oils
2.1 Oil production and exports
2.2 Cargo damage
2.3 Quality of oils shipped
2.3.1 Palm oil
2.3.2 Soybean oil and other seed oils
2.3.3 Shipment of oils intended for production of FAMEs
2.4 Codex Alimentarius
2.5 Oil shipments: systems and regulations
2.5.1 The parcel tanker
2.5.2 Parcel tanker categories: IMO classification
2.5.3 Trade regulation: the role of the FOSFA and NIOP
2.6 Shore storage
2.7 Movement and storage costs
2.8 Refinery location
3 Production of Oils
3.1 Introduction
3.2 Seed handling and storage
3.2.1 Seed arrival
3.2.1.1 Seed weighing
3.2.1.2 Sampling
3.2.2 Seed reception and precleaning
3.2.3 Storage
3.3 Preparation of oilseeds
3.3.1 Reason for and purpose of preparation
3.3.2 Milling defect
3.4 Preparation of soybean
3.4.1 Cleaning and weighing
3.4.2 Cracking
3.4.3 Cooking–conditioning
3.4.4 Flaking
3.4.5 Expander
3.4.6 Soybean dehulling
3.4.6.1 Traditional process
3.4.6.2 Hot dehulling process
3.5 Preparation and pressing of rapeseed (canola)
3.5.1 Preparation
3.5.2 Cooking
3.5.3 Mechanical pressing
3.5.4 Press oil clarification
3.5.5 Press cake treatment
3.6 Preparation and pressing of sunflower seed
3.7 Full pressing
3.7.1 Cold pressing
3.7.2 Double pressing
3.7.3 Cake treatment
3.8 Oil from other seeds
3.8.1 Cottonseed
3.8.2 Corn germ
3.8.3 Coconut or copra oil
3.8.4 Linseed (flaxseed)
3.8.5 Safflower
3.8.6 Peanut (groundnut)
3.8.7 Rice bran
3.8.8 Sesame seed
3.9 Olive oil production
3.9.1 Pressing
3.9.2 Centrifugation
3.9.3 Olive pomace extraction
3.10 Palm oil production
3.10.1 Before reaching the mill
3.10.2 Sterilisation
3.10.3 Threshing
3.10.4 Pressing
3.10.5 Crude oil clarification
3.10.6 Oil drying
3.10.7 Fibre–fruit separation
3.10.8 Nut conditioning
3.10.9 Nut cracking installation
3.10.10 Kernel separation
3.10.11 Uses of secondary palm fruit products
3.10.11.1 Palm kernel meal
3.10.11.2 Fibres and shell
4 Solvent Extraction
4.1 Introduction
4.2 Solvent extractor
4.2.1 Contact time
4.2.2 Particle thickness
4.2.3 Extractor temperature
4.2.4 Miscella flux rate
4.2.5 Number of miscella stages
4.2.6 Solvent retention
4.3 Meal desolventiser toaster
4.3.1 Predesolventising trays
4.3.2 Countercurrent trays
4.3.3 Sparge tray
4.4 Meal dryer cooler
4.4.1 Steam-drying trays
4.4.2 Air-drying trays
4.4.3 Air-cooling trays
4.5 Miscella distillation system
4.6 Solvent recovery system
4.7 Heat recovery
5 Edible Oil Refining: Current and Future Technologies
5.1 Introduction
5.2 Next-generation chemical refining with nanoneutralisation
5.3 Enzymatic degumming: a missing link in the physical refining of soft oils?
5.4 Bleaching: from single-stage colour removal to multistage adsorptive purification
5.5 Deodorisation: much more than just a process for the removal of off-flavours
5.6 Short-path distillation and supercritical processing: refining technologies for the future?
6 Oil Modification Processes
6.1 Introduction
6.2 Hydrogenation
6.2.1 Historical perspective
6.2.2 Principle
6.2.3 Process parameters
6.2.3.1 Hydrogen pressure
6.2.3.2 Temperature
6.2.3.3 Catalyst
6.2.4 Process design
6.2.5 Future for hydrogenation technology
6.2.5.1 Smarter combinations of the conventional technology
6.2.5.2 Alternative catalysts
6.2.5.3 Advanced process technology
6.2.5.4 Summary
6.3 Interesterification
6.3.1 Historical perspective
6.3.2 Principle
6.3.3 Process parameters
6.3.3.1 Oil quality
6.3.3.2 Catalyst
6.3.3.3 Oil losses
6.3.4 Process design
6.3.4.1 Processed product quality
6.3.5 Future for interesterification technology
6.4 Dry fractionation
6.4.1 Historical perspective
6.4.2 Principle
6.4.3 Process parameters
6.4.3.1 Cooling speed
6.4.3.2 Agitation
6.4.4 Process design
6.4.4.1 Crystalliser design
6.4.4.2 Filter design
6.4.4.3 Plant design
6.4.5 Future for fractionation technology
6.4.5.1 Optimised crystalliser designs
6.4.5.2 High-pressure filtrations
6.4.5.3 Continuous fractional crystallisation
6.4.5.4 Alternative multistage processes for specialty fats production
6.4.6 Summary
7 Enzyme Processing
7.1 Introduction
7.1.1 Objectives of enzyme processing
7.2 Enzyme applications before oil refining
7.2.1 Enzyme-assisted pressing
7.2.2 Enzymatic degumming
7.2.3 Enzymatic degumming process (phospholipase A1)
7.2.4 Other phospholipases
7.2.5 Oil recovery from gums
7.2.6 Oil remediation
7.3 Applications within edible oil modification
7.3.1 Industrial-scale enzymatic interesterification
7.3.2 Factors influencing enzyme working life
7.3.3 Formulating with interesterified oils and fats
7.3.4 Enzyme reactions for speciality fats
7.3.5 Production of fats high in omega-3 fatty acids
7.4 Improving processing sustainability through enzyme usage
8 Application of Edible Oils
8.1 Introduction
8.2 Physical chemistry of triacylglycerides
8.3 Fat crystal networks
8.4 Design of functional TAG compositions
8.5 Application in fat-continuous emulsions (spreads)
8.6 Application in water-continuous emulsions
8.6.1 Mayonnaise and dressings
8.6.2 Nondairy (fat) creams and spreads
8.6.3 Ice cream
8.7 Application in other fat-continuous products
8.7.1 Baking fats
8.7.2 Chocolate
8.8 Conclusion
9 Quality and Food Safety Assurance and Control
9.1 Introduction
9.2 Analytical methods for measuring oil and fat composition
9.3 Quality analyses
9.3.1 Free fatty acids
9.3.2 Peroxides
9.3.3 Phosphorus
9.3.4 Moisture and dirt
9.3.5 Colour
9.3.6 Metals
9.3.7 Deterioration of Bleachability Index
9.3.8 Tocopherols
9.4 Supply chain contaminants
9.4.1 Polycyclic aromatic hydrocarbons
9.4.2 Pesticide residues
9.4.3 Hydrocarbons of mineral origin
9.4.4 Mycotoxins
9.4.5 Other contaminants
9.5 Quality and food safety assurance
9.5.1 Crude oil analyses
9.5.2 Crude oil risk matrix
9.5.3 Process validation contaminant removal
9.5.4 Oil processing link tables
9.5.5 Food safety control points
10 Oil Processing Design Basics
10.1 Introduction
10.2 Refining and modification process routes for most common oil types
10.2.1 Process step definitions
10.2.1.1 Degumming or water degumming (degummed)
10.2.1.2 Deep degumming (ddg)
10.2.1.3 Neutralisation (n)
10.2.1.4 One-step bleaching (osb)
10.2.1.5 Two-step bleaching (tsb)
10.2.1.6 Deodorisation (d)
10.2.1.7 Deodorisation/stripping (ds)
10.2.1.8 Hydrogenation (h)
10.2.1.9 Interesterification (ie)
10.2.1.10 Dewaxing/winterisation (wi)
10.2.1.11 Dry fractionation (df)
10.2.1.12 Soapstock splitting (ss)
10.2.2 Process routes for straight refined oils and fats
10.2.3 Process routes pre- and post-hydrogenation
10.2.4 Process routes pre- and post-IEC
10.2.5 Process routes pre- and post-IEE
10.2.6 Process routes in dry fractionation and dewaxing
10.3 Oil processing block diagram design
10.3.1 Standard oil processing block diagrams
10.3.2 Batch and continuous processes
10.3.2.1 Batch processes
10.3.2.2 Continuous processes
10.3.3 Refining of straight oils and fats
10.3.3.1 Chemical refining
10.3.3.2 Physical refining
10.3.4 Refining combined with hydrogenation
10.3.5 Refining combined with interesterification
10.3.6 Refining and dewaxing
10.3.7 Refining and fractionation
10.3.8 Production of trans-free hard fats
10.4 Effective equipment capacity
10.4.1 Example: calculation of effective times for 5- and 7-days-a-week operations
10.4.1.1 5 days a week
10.4.1.2 7 days a week
10.5 Tank park design rules
10.5.1 Storage capacity
10.5.2 Degradation during storage
10.5.2.1 Hydrolysis
10.5.2.2 Oxidation
10.5.2.3 Intermixing with other oils
10.5.2.4 Contamination by chemicals or impurities
10.5.3 Tank design rules
10.5.3.1 Tank shape and material of construction
10.5.3.2 Tank heating
10.5.3.3 Tank insulation
10.5.3.4 Avoiding air contact
10.5.4 Piping design rules
10.5.4.1 Materials
10.5.4.2 Insulation and heating
10.5.4.3 Layout
10.6 Design estimates for utilities consumptions and effluent production
10.6.1 Introduction
10.6.2 Utilities
10.6.2.1 Heating
10.6.2.2 Open steam and vacuum
10.6.2.3 Electrical energy
10.6.2.4 Cooling water
10.6.2.5 Gases
10.6.3 Effluent
10.6.3.1 Liquid effluent
10.6.3.2 Solid waste
10.6.3.3 Exhaust gases
10.6.4 Utility consumption and effluent data per process
10.6.4.1 Storage
10.6.4.2 Refining processes
10.6.4.3 Modification processes
10.7 Occupational safety by design
10.7.1 Introduction
10.7.2 General hazards
10.7.3 Main occupational hazards of oil refining
10.7.3.1 Neutralisation and soapsplitting
10.7.3.2 Autoignition of spent bleaching earth
10.7.3.3 Deodoriser safety
10.7.4 Main occupational hazards of oil modification
10.7.4.1 Hydrogenation safety hazards
10.7.4.2 Safety of IEC
10.7.5 Main occupational hazards of oil storage and handling
10.7.5.1 Access to tanks and processing vessels
10.7.5.2 Top access to tank carsPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=166406 Réservation
Réserver ce documentExemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Bibliothèque INDUSTRIES ALIMENTAIRES ET COSMETIQUES-FILIERES HAM 18.9 Papier 33004000615578 Empruntable
Titre : Food physics. Physical properties. Measurement and applications. Type de document : texte imprimé Auteurs : L.O. Figura ; A.A. Teixeira Editeur : Berlin : Springer-Verlag Année de publication : 2007 Importance : 550 p. ISBN/ISSN/EAN : 978-3-540-34191-8 Prix : 100,39 Note générale : Annexes
Bibliographie
Illustrations
IndexLangues : Anglais (eng) Catégories : Liste Plan de classement
9.3 (PROPRIETES PHYSIQUES) [Classement Massy]
Thésaurus Agro-alimentaire
PRODUIT ALIMENTAIRE ; PROPRIETE PHYSIQUE ; ACTIVITE DE L'EAU ; POIDS ; DENSITE ; PROPRIETE RHEOLOGIQUE ; PERMEABILITE ; THERMODYNAMIQUE ; CONDUCTIBILITE THERMIQUE ; PROPRIETE OPTIQUE ; ELECTRICITE ; RADIOACTIVITE ; CAPTEUR ; TECHNIQUE ANALYTIQUE ; TENSION SUPERFICIELLE ; TRANSFERT DE CHALEURType de document : Livre Table des matières : 1 Water Activity
1.1 Introduction
1.1.1 Time to Reach Equilibrium
1.1.2 Solid-Fluid Boundary Surfaces
1.2 Adsorption Equilibrium
1.2.1 Surface Adhesion
1.2.2 Sorption Isotherms
1.2.3 Freundlich Model
1.2.4 Langmuir Model
1.2.5 BET Model
1.2.6 Sorption of Water Vapor in Foods
1.2.7 Water Activity
1.2.8 Moisture Content
1.2.9 Hygroscopicity
1.2.10 BET Equation for Foods
1.2.11 GAB Model
1.2.12 Other Models
1.3 Shelf Life of Food Related to Water Activity
1.4 Laboratory Determination of Sorption Isotherms
1.5 Applications
Literature
2 Mass and Density
2.1 Mass
2.2 Weighing and Atmospheric Buoyancy
2.3 Density
2.3.1 Temperature Dependency of Density
2.3.2 Pressure Dependency of Density
2.3.3 Specific Gravit (Relative Density)
2.3.4 Methods for Laboratory Measurement of Density
2.4 Applications
Literature
3 Geometrie Properties: Size and Shape
3.1 Particle Size
3.1.1 Sizing by Image Analysis
3.1.2 Equivalent Diameters
3.1.3 Geometric Equivalent Diameters
3.1.4 Physical Equivalent Diameters
3.1.5 Specific Surface Area
3.1.5.1 Specific Surface of Individual Particles
3.1.5.2 Specific Surface Area in Bulk Materials
3.1.6 Particle Shape and Size for Crystals
3.1.6.1 Form Factor – Sphericity
3.2 Particle Size Distributions
3.2.1 Sizing by Sieving
3.2.2 Median
3.2.3 Modal Value
3.2.4 Average Particle Size - Integral Mean
3.2.5 Specific Surface Distribution
3.2.6 Sauter Diameter
3.2.7 Characteristics of Distributions
3.3 Measuring Particle Size by Other Techniques
3.3.1 Weighing Technique
3.3.2 Sedimentation and Aerodynamic Classification with Fluids
3.3.3 Optical Techniques
3.3.4 Electrical Techniques
3.3.5 Other Techniques
3.4 Applications
Literature
4 Rheological Properties
4.1 Elastic Properties
4.1.1 Uniaxial Stress
4.1.2 Young's Modulus
4.1.3 Bulk Modulus
4.1.4 Shear Modulus
4.1.5 Poisson's Ratio and Transverse Strain
4.2 Rheological Models
4.3 Viscous Behavior - Flow
4.3.1 Shear Rate
4.3.2 Newtonian Flow Behavior
4.3.3 Non-Newtonian Flow Behavior
4.3.4 Comparison of Newtonian with Non-Newtonian Fluids
4.3.5 Pseudoplastic Flow Behavior
4.3.6 Thixotropic Flow Behavior
4.3.7 Dilatant Flow Behavior
4.3.8 Rheopectic Flow Behavior
4.3.9 Plastic Flow Behavior
4.3.10 Overview: Non-Newtonian Flow Behavior
4.3.11 Model Functions
4.3.12 Ostwald-de-Waele Law
4.3.13 Model Functions for Plastic Fluids
4.4 Temperature Dependency of Viscosity
4.5 Measurement of Rheological Properties
4.5.1 Rotational Rheometers
4.5.2 Measuring Instruments Based on Other Principles
4.5.3 Funnel Flow from Beaker or Cup
4.6 Viscoelasticity
4.6.1 Stress Relaxation
4.6.2 Cree
4.6.3 Oscillation Testing
4.7 Rheology and Texture of Solid Foods
4.7.1 Rheological Tests
4.7.2 Texture Tests
4.8 Applications
Literature
5 Interfacial Phenomena
5.1 Interfacial Surface Tension
5.1.1 Curved (Convex / Concave) Interfaces
5.1.2 Temperature Dependency
5.1.3 Concentration Dependency
5.1.4 Liquid-Liquid-Gas Systems
5.1.5 Solid-Liquid-Gas systems
5.1.6 Kinetics of Interfacial Phenomena
5.1.7 Adsorption Kinetics at Solid Interfaces
5.2 Measurement
5.2.1 Measuring Interfacial Tension
5.2.2 Measuring Contact Angle
5.2.3 Dynamic Measurement
5.3 Applications
Literature
6 Permeability
6.1 Steady State Diffusion in Solids
6.2 Conductivity, Conductance and Resistance
6.3 Transport Through Solid Multilayers
6.4 Food packaging Considerations
6.5 Molecular Transport in Permeation
6.6 Temperature Dependency
6.7 Measurement of Permeability
6.8 Analogous Transport Phenomena (Heat and Electricity)
6.9 Applications
Literature
7 Thermal Properties
7.1 Temperature
7.2 Heat and Enthalpy
7.3 Thermodynamics - Basic Principles
7.3.1 Laws of Thermodynamics
7.4 Heat Capacity
7.4.1 Ideal Gases and Ideal Solids
7.4.2 Heat Capacity of Real Solids
7.5 Classification of Phase Transitions
7.6 Heat Transfer in Food
7.6.1 Heat Radiation
7.6.2 Conduction Heat Transfer
7.6.3 Convection Heat Transfer
7.6.4 Heat Transfer by Phase Transition
7.6.5 Thermal Conductivity
7.6.6 Thermal Diffusivity
7.7 Measurement of Thermal Properties
7.7.1 Measurement of Thermal Conductivity and Thermal Diffusivity
7.8 Caloric Value of Foods
7.8.1 Caloric (Energy) Requirement of the Human Body
7.8.2 Caloric Value of Food
7.8.3 Measurement of Caloric (Combustion) Values
7.9 Thermal Analysis
7.9.1 Thermogravimetry (TG)
7.9.2 Heat Flow Calorimetry
7.10 Applications
Literature
8 Electrical Properties
8.1 Conductivity
8.1.1 Temperature Dependency of Electrical Conductivity
8.1.2 Solid Foods of Plant Origin
8.1.3 Solid Foods of Animal Origin
8.1.4 Electrolyte Solutions
8.2 Measurement of Electrieal Conductivity
8.3 Capacitance and Inductance
8.4 Applications
Literature
9 Magnetic Properties
9.1 Materials
9.1.1 Paramagnetism
9.1.2 Ferromagnetism
9.1.3 Diamagnetism
9.2 Magnetization
9.2.1 Applications for Magnetic Field Forces
9.3 Magnetic Resonance
9.3.1 High-Resolution NMR
9.3.2 Low-Resolution NMR
9.4 Applications
Literature
10 Electromagnetic Properties
10.1 Electric Polarization
10.1.1 Temperature Dependency
10.1.2 Frequency Dependency
10.2 Microwaves
10.2.1 Conversion of Microwaves into Heat
10.2.2 Penetration Depth of Microwaves
10.2.3 Microwave Heating of Food
10.3 Applications
Literature
11 Optical Properties
11.1 Refraction
11.1.1 Basics
11.1.2 Measurement of Refraction Index
11.1.3 Applications for Refraction Index
11.2 Colorimetry
11.2.1 Light and Color
11.2.2 Physiology of Color Perception
11.2.3 Color as a Vector Quantity
11.2.4 Color Measurement
11.3 Applications for Color Measurement
11.4 Near infrared (NIR)
11.4.1 Basics
11.4.2 Measuring Techniques
11.5 Applications
11.6 Ultraviolet (UV)
11.6.1 Basics
11.6.2 Applications
11.6.3 Further Applications
Literature
12 Acoustical Properties
12.1 Sound
12.1.1 Speed of Sound
12.1.2 Loudness and Volume
12.1.3 Noise
12.2 Ultrasonic Sound
12.3 Applications
Literature
13 Radioactivity
13.1 Types of Radiation
13.2 Radioactive Decay
13.3 Measurement Ionizing Radiation (alpha, bêta, gamma)
13.4 Natural Radioactivity
13.4.1 Exposure to the Human Body
13.4.2 Irradiation of Food and Packaging Material
13.4.3 Detection of Food Irradiation
13.5 Applications
Literature
14 On-line Sensing
14.1 Control Systems - Basics
14.2 Sensor Types and Applications
14.3 Some Sensors of Relevance
14.3.1 Weighing
14.3.2 Density Sensors
14.3.3 Metal Detectors
14.3.4 Flow Sensors
14.3.5 Refraction Sensors
14.3.6 Sensing Principles
14.3.7 Chemosensors and Biosensors
14.4 Further Reading
Literature
15 Appendices
15.1 The International System of Units (SI)
15.2 Distribution Functions
15.3 Complex Numbers
15.4 Greek Letters
15.5 Conversion Chart: Temperature
15.6 Sugar Conversion Chart: Concentration, Density, Refraction
15.7 Fundamental Constants
15.8 Properties of Water
15.9 Food Material Data
15.10 Color Test Solutions
16 General Literature
List of Tables
List of Figures
IndexPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=67965 Food physics. Physical properties. Measurement and applications. [texte imprimé] / L.O. Figura ; A.A. Teixeira . - Berlin : Springer-Verlag, 2007 . - 550 p.
ISBN : 978-3-540-34191-8 : 100,39
Annexes
Bibliographie
Illustrations
Index
Langues : Anglais (eng)
Catégories : Liste Plan de classement
9.3 (PROPRIETES PHYSIQUES) [Classement Massy]
Thésaurus Agro-alimentaire
PRODUIT ALIMENTAIRE ; PROPRIETE PHYSIQUE ; ACTIVITE DE L'EAU ; POIDS ; DENSITE ; PROPRIETE RHEOLOGIQUE ; PERMEABILITE ; THERMODYNAMIQUE ; CONDUCTIBILITE THERMIQUE ; PROPRIETE OPTIQUE ; ELECTRICITE ; RADIOACTIVITE ; CAPTEUR ; TECHNIQUE ANALYTIQUE ; TENSION SUPERFICIELLE ; TRANSFERT DE CHALEURType de document : Livre Table des matières : 1 Water Activity
1.1 Introduction
1.1.1 Time to Reach Equilibrium
1.1.2 Solid-Fluid Boundary Surfaces
1.2 Adsorption Equilibrium
1.2.1 Surface Adhesion
1.2.2 Sorption Isotherms
1.2.3 Freundlich Model
1.2.4 Langmuir Model
1.2.5 BET Model
1.2.6 Sorption of Water Vapor in Foods
1.2.7 Water Activity
1.2.8 Moisture Content
1.2.9 Hygroscopicity
1.2.10 BET Equation for Foods
1.2.11 GAB Model
1.2.12 Other Models
1.3 Shelf Life of Food Related to Water Activity
1.4 Laboratory Determination of Sorption Isotherms
1.5 Applications
Literature
2 Mass and Density
2.1 Mass
2.2 Weighing and Atmospheric Buoyancy
2.3 Density
2.3.1 Temperature Dependency of Density
2.3.2 Pressure Dependency of Density
2.3.3 Specific Gravit (Relative Density)
2.3.4 Methods for Laboratory Measurement of Density
2.4 Applications
Literature
3 Geometrie Properties: Size and Shape
3.1 Particle Size
3.1.1 Sizing by Image Analysis
3.1.2 Equivalent Diameters
3.1.3 Geometric Equivalent Diameters
3.1.4 Physical Equivalent Diameters
3.1.5 Specific Surface Area
3.1.5.1 Specific Surface of Individual Particles
3.1.5.2 Specific Surface Area in Bulk Materials
3.1.6 Particle Shape and Size for Crystals
3.1.6.1 Form Factor – Sphericity
3.2 Particle Size Distributions
3.2.1 Sizing by Sieving
3.2.2 Median
3.2.3 Modal Value
3.2.4 Average Particle Size - Integral Mean
3.2.5 Specific Surface Distribution
3.2.6 Sauter Diameter
3.2.7 Characteristics of Distributions
3.3 Measuring Particle Size by Other Techniques
3.3.1 Weighing Technique
3.3.2 Sedimentation and Aerodynamic Classification with Fluids
3.3.3 Optical Techniques
3.3.4 Electrical Techniques
3.3.5 Other Techniques
3.4 Applications
Literature
4 Rheological Properties
4.1 Elastic Properties
4.1.1 Uniaxial Stress
4.1.2 Young's Modulus
4.1.3 Bulk Modulus
4.1.4 Shear Modulus
4.1.5 Poisson's Ratio and Transverse Strain
4.2 Rheological Models
4.3 Viscous Behavior - Flow
4.3.1 Shear Rate
4.3.2 Newtonian Flow Behavior
4.3.3 Non-Newtonian Flow Behavior
4.3.4 Comparison of Newtonian with Non-Newtonian Fluids
4.3.5 Pseudoplastic Flow Behavior
4.3.6 Thixotropic Flow Behavior
4.3.7 Dilatant Flow Behavior
4.3.8 Rheopectic Flow Behavior
4.3.9 Plastic Flow Behavior
4.3.10 Overview: Non-Newtonian Flow Behavior
4.3.11 Model Functions
4.3.12 Ostwald-de-Waele Law
4.3.13 Model Functions for Plastic Fluids
4.4 Temperature Dependency of Viscosity
4.5 Measurement of Rheological Properties
4.5.1 Rotational Rheometers
4.5.2 Measuring Instruments Based on Other Principles
4.5.3 Funnel Flow from Beaker or Cup
4.6 Viscoelasticity
4.6.1 Stress Relaxation
4.6.2 Cree
4.6.3 Oscillation Testing
4.7 Rheology and Texture of Solid Foods
4.7.1 Rheological Tests
4.7.2 Texture Tests
4.8 Applications
Literature
5 Interfacial Phenomena
5.1 Interfacial Surface Tension
5.1.1 Curved (Convex / Concave) Interfaces
5.1.2 Temperature Dependency
5.1.3 Concentration Dependency
5.1.4 Liquid-Liquid-Gas Systems
5.1.5 Solid-Liquid-Gas systems
5.1.6 Kinetics of Interfacial Phenomena
5.1.7 Adsorption Kinetics at Solid Interfaces
5.2 Measurement
5.2.1 Measuring Interfacial Tension
5.2.2 Measuring Contact Angle
5.2.3 Dynamic Measurement
5.3 Applications
Literature
6 Permeability
6.1 Steady State Diffusion in Solids
6.2 Conductivity, Conductance and Resistance
6.3 Transport Through Solid Multilayers
6.4 Food packaging Considerations
6.5 Molecular Transport in Permeation
6.6 Temperature Dependency
6.7 Measurement of Permeability
6.8 Analogous Transport Phenomena (Heat and Electricity)
6.9 Applications
Literature
7 Thermal Properties
7.1 Temperature
7.2 Heat and Enthalpy
7.3 Thermodynamics - Basic Principles
7.3.1 Laws of Thermodynamics
7.4 Heat Capacity
7.4.1 Ideal Gases and Ideal Solids
7.4.2 Heat Capacity of Real Solids
7.5 Classification of Phase Transitions
7.6 Heat Transfer in Food
7.6.1 Heat Radiation
7.6.2 Conduction Heat Transfer
7.6.3 Convection Heat Transfer
7.6.4 Heat Transfer by Phase Transition
7.6.5 Thermal Conductivity
7.6.6 Thermal Diffusivity
7.7 Measurement of Thermal Properties
7.7.1 Measurement of Thermal Conductivity and Thermal Diffusivity
7.8 Caloric Value of Foods
7.8.1 Caloric (Energy) Requirement of the Human Body
7.8.2 Caloric Value of Food
7.8.3 Measurement of Caloric (Combustion) Values
7.9 Thermal Analysis
7.9.1 Thermogravimetry (TG)
7.9.2 Heat Flow Calorimetry
7.10 Applications
Literature
8 Electrical Properties
8.1 Conductivity
8.1.1 Temperature Dependency of Electrical Conductivity
8.1.2 Solid Foods of Plant Origin
8.1.3 Solid Foods of Animal Origin
8.1.4 Electrolyte Solutions
8.2 Measurement of Electrieal Conductivity
8.3 Capacitance and Inductance
8.4 Applications
Literature
9 Magnetic Properties
9.1 Materials
9.1.1 Paramagnetism
9.1.2 Ferromagnetism
9.1.3 Diamagnetism
9.2 Magnetization
9.2.1 Applications for Magnetic Field Forces
9.3 Magnetic Resonance
9.3.1 High-Resolution NMR
9.3.2 Low-Resolution NMR
9.4 Applications
Literature
10 Electromagnetic Properties
10.1 Electric Polarization
10.1.1 Temperature Dependency
10.1.2 Frequency Dependency
10.2 Microwaves
10.2.1 Conversion of Microwaves into Heat
10.2.2 Penetration Depth of Microwaves
10.2.3 Microwave Heating of Food
10.3 Applications
Literature
11 Optical Properties
11.1 Refraction
11.1.1 Basics
11.1.2 Measurement of Refraction Index
11.1.3 Applications for Refraction Index
11.2 Colorimetry
11.2.1 Light and Color
11.2.2 Physiology of Color Perception
11.2.3 Color as a Vector Quantity
11.2.4 Color Measurement
11.3 Applications for Color Measurement
11.4 Near infrared (NIR)
11.4.1 Basics
11.4.2 Measuring Techniques
11.5 Applications
11.6 Ultraviolet (UV)
11.6.1 Basics
11.6.2 Applications
11.6.3 Further Applications
Literature
12 Acoustical Properties
12.1 Sound
12.1.1 Speed of Sound
12.1.2 Loudness and Volume
12.1.3 Noise
12.2 Ultrasonic Sound
12.3 Applications
Literature
13 Radioactivity
13.1 Types of Radiation
13.2 Radioactive Decay
13.3 Measurement Ionizing Radiation (alpha, bêta, gamma)
13.4 Natural Radioactivity
13.4.1 Exposure to the Human Body
13.4.2 Irradiation of Food and Packaging Material
13.4.3 Detection of Food Irradiation
13.5 Applications
Literature
14 On-line Sensing
14.1 Control Systems - Basics
14.2 Sensor Types and Applications
14.3 Some Sensors of Relevance
14.3.1 Weighing
14.3.2 Density Sensors
14.3.3 Metal Detectors
14.3.4 Flow Sensors
14.3.5 Refraction Sensors
14.3.6 Sensing Principles
14.3.7 Chemosensors and Biosensors
14.4 Further Reading
Literature
15 Appendices
15.1 The International System of Units (SI)
15.2 Distribution Functions
15.3 Complex Numbers
15.4 Greek Letters
15.5 Conversion Chart: Temperature
15.6 Sugar Conversion Chart: Concentration, Density, Refraction
15.7 Fundamental Constants
15.8 Properties of Water
15.9 Food Material Data
15.10 Color Test Solutions
16 General Literature
List of Tables
List of Figures
IndexPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=67965 Exemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Biophysique PROPRIETES PHYSIQUES DES ALIMENTS FIG 9.3 Papier MAS-13078 Consultable sur place Food powders. Physical properties, processing, and functionality. / Gustavo V. Barbosa-Cánovas (2005)
Titre : Food powders. Physical properties, processing, and functionality. Type de document : texte imprimé Auteurs : Gustavo V. Barbosa-Cánovas ; Enrique Ortega-Rivas ; Pablo Juliano ; Hong Yan Editeur : NEW YORK : Kluwer Academic/Plenum Publishers Année de publication : 2005 Collection : Food engineering series Importance : 372 p. ISBN/ISSN/EAN : 978-0-306-47806-2 Prix : 115,15 Note générale : Bibliographie
Illustrations
IndexLangues : Anglais (eng) Catégories : Liste Plan de classement
16.10 (OPERATIONS MECANIQUES SUR LES SOLIDES LES POUDRES ET LES FLUIDES) [Classement Massy]
Thésaurus Agro-alimentaire
POUDRE ; PROPRIETE PHYSIQUE ; DENSITE ; SEPARATION ; PRODUIT ALIMENTAIRE ; ECHANTILLONNAGE ; STOCKAGE ; GRANULOMETRIE ; ENCAPSULATION ; MELANGE ; SECHAGE ; AGGLOMERATIONType de document : Livre Table des matières : PART 1: Food Powders Characterization
1. Sampling
1.1 Theory and Statistical Aspects
1.1.1 Introduction: Importance of Sampling
1.1.2 Sampling Variation Sources
1.1.3 Minimum Sample Size
1.1.4 Standard Sampling Deviation
1.2 Sampling Techniques and Procedures
1.3 Samplers and Sample Dividers
1.4 Sample Dispersion
References
2. Particle Properties
2.1 Particle Size and Shape
2.1.1 Introductory Definitions
2.1.2 Selection of Relevant Characteristic Particle Size
2.1.3 Shape of Particle Related to Sphericity
2.1.4 Evaluation of Shape Outline
2.2 Particle Density
2.2.1 Density Expressions
2.2.2 Liquid Pycnometry
2.2.3 Air Pycnometry
2.2.4 Aerodynamic Particle Density
2.3 Particle Size Distribution
2.3.1 Relevance of Particle Size Distribution
2.3.2 Types of Particle Size Distribution
2.3.3 Particle Size Distribution Tendencies
2.3.4 Presentation of Data
2.3.5 Size Distribution Functions
2.3.6 Analytical Techniques for Size Measurement
2.3.6.1 Sieving
2.3.6.2 Microscopy Techniques
2.3.6.3 Sedimentation
2.3.6.4 Stream Scanning
2.3.6.5 On-line Measurement Techniques
2.4 Other Primary Properties
2.4.1 Surface Area
2.4.1.1 Permeametry
2.4.1.2 Gas Adsorption
2.4.2 Moisture
References
3. Bulk Properties
3.1 Flow Properties
3.1.1 Introduction
3.1.2 Failure Properties
3.1.2.1 Definitions
3.1.2.2 Determinations Using Shear Cells
3.1.2.3 Direct Measurement of Failure Properties
3.1.3 Other Handling Properties
3.1.3.1 Angle of Repose
3.1.3.2 Angle of Slide
3.1.3.3 Conveying Angle
3.1.3.4 Angle of Spatula
3.2 Classification of Powders According to Handling
3.3 Packing Properties
3.3.1 Bulk Density and Porosity
3.3.1.1 Measurements of Bulk Density
3.3.1.2 Hausner Ratio
3.3.1.3 Factors Affecting Bulk Density
3.3.2 Compressibility
3.4 Strength Properties
3.4.1 Abrasion
3.4.2 Friability
3.5 Reconstitution Properties
3.5.1 Instantizing Processes
3.5.2 Instant Properties
3.5.3 Instant Property Evaluation
3.5.3.1 Penetration Speed Test
3.5.3.2 A Dynamic Wetting Test
3.5.3.3 Dispersibility Measuring Test
3.5.3.4 IDF Standard Method
References
PART II: Production, Handling, and Processing
4. Storage
4.1 Alternatives for Storage of Bulk Solids
4.1.1 Outdoors and Structured Storage
4.1.2 Storage in Containers
4.2 Principles Involved in Storage Bin Design
4.2.1 Basic Concepts of Bulk Solids Plant
4.2.1.1 Ratholes
4.2.1.2 Arching
4.2.1.3 Erratic Flow
4.2.1.4 Segregation and Flooding
4.2.2 Elements of Bulk Solids Gravity Flow
4.3 Flow Patterns in Storage Bins
4.3.1 Mass-Flow
4.3.2 Funnel-Flow
4.3.3 Expanded Flow
4.3.4 Symmetrical and Non-symmetrical Flow
4.4 Wall Stresses in Axi-Symmetrical Bins
4.4.1 Distribution of Bin Wall Loads
4.4.2 Calculation of Loads in Bins
4.5 Natural Discharge from Bins
4.5.1 Hopper Opening for Coarse Bulk Solids
4.5.1.1 Mass-Flow Rate Calculation
4.5.2 Hopper Opening for Fine Bulk Solids
4.5.3 Velocity Distribution in the Hopper
4.5.4 Factors Influencing Bin Geometry for Mass-Flow
4.5.5 Effect of the Gas Phase
4.6 Assisted Discharge
4.6.1 Passive Devices
4.6.2 Active Devices
4.6.3 Use of Feeders to Control Discharge
4.6.3.1 Volumetric Feeders
4.6.3.2 Gravimetric Feeders
4.6.3.3 Loads on a Hopper Feeder
References
5.Conveying
5.1 Introduction
5.2 Belt Conveyors
5.2.1 Components
5.2.2 Design Aspects
5.2.3 Applications
5.3 Chain Conveyors
5.3.1 Scraper Conveyors
5.3.2 Apron Conveyors
5.3.3 Bucket Elevators
5.4 Screw Conveyors
5.4.1 Main Features
5.4.2 Operating Characteristics
5.4.3 Capacity and Power
5.4.4 Main Applications
5.5 Pneumatic Conveying
5.5.1 Introduction
5.5.2 Theoretical Aspects
5.5.3 Classification of Conveying Systems
5.5.4 Dense-Phase Conveyors
5.5.4.1 Plug-Phase Conveyors
5.5.4.2 Fluidized Systems
5.5.4.3 Blow Tanks
5.5.4.4 Long Distance Systems
5.5.5 Dilute-Phase Conveyors
5.5.5.1 Types of Conveyors
5.5.5.2 Operating Features
5.5.5.3 System Components
5.5.5.4 Selection and Design
5.5.6 Applications
References
6. Size Reduction
6.1 Principles of Size Reduction
6.1.1 Introductory Aspects
6.1.2 Forces Used in Size Reduction
6.1.3 Mechanical Resistance Involved in Size Reduction
6.1.4 Properties of Comminuted Products
6.2 Energy Requirements: Comminution Laws
6.2.1 Rittinger's Law
6.2.2 Kick's Law
6.2.3 Bond's Law and Work Index
6.3 Size Reduction Equipment
6.3.1 Classification
6.3.2 Features
6.3.2.1 Crushing Rolls
6.3.2.2 Hammer Mills
6.3.2.3 Disc Attrition Mills
6.3.2.4 Tumbling Mills
6.3.3 Operation
6.4 Criteria for Selection of Comminution Processes
6.4.1 General Considerations
6.4.2 Hardness and Abrasiveness
6.4.3 Mechanical Structure
6.4.4 Moisture
6.4.5 Temperature Sensitivity
6.5 Applications
References
Size Enlargement
7.1 Introduction: Size Enlargement Processes
7.2 Aggregation Fundamentals
7.2.1 Mechanisms of particle Bonding
7.2.1.1 Solid Bridges
7.2.1.2 Immobile or Freely Movable Liquid Bridges
7.2.1.3 Attraction Forces Between Solid particles
7.2.1.4 Form-Closed Bonds or Interlocking Bonds
7.2.2 Strength of Agglomerates
7.3 Agglomeration Methods
7.3.1 Tumbling of Powders (Rewetting Agglomeration)
7.3.2 Pressure Agglomeration
7.3.3 Specific Agglomeration Methods
7.3.3.1 Straight-Through Agglomeration
7.3.3.2 Spray-Bed Dryer Agglomeration
7.3.3.3 Atomizer Wheel
7.3.3.4 Freeze-Drying
7.3.4 Binders
7.4 Selection Criteria for Agglomeration Methods
7.4.1 Feed Characteristics
7.4.2 Agglomerated Powder Properties
7.4.3 Alternative Methods
7.5 Design Aspects of Agglomeration Processes
7.6 Applications of Agglomeration
References
8. EncapsuIation Processes
8.1 Introduction
8.2 Microcapsules
8.2.1 Coating Material for Encapsulation
8.2.2 Types of Encapsulated Food Ingredients
8.2.3 Microcapsules: Their Structure and Release Mechanisms
8.3 Spray Drying
8.4 Extrusion
8.5 Molecular Inclusion in Cyclodextrins
8.6 Coacervation
8.7 Centrifugal Extrusion
8.8 Air Suspension Coating
8.9 Spray Chilling and Spray Cooling
8.10 Centrifugal Suspension-Separation
8.11 Freeze-Drying
8.12 Co-Crystallization
8.13 Final Remarks
References
9. Mixing
9.1 Introduction
9.2 Mixing Mechanisms
9.2.1 Convective, Diffusive, and Shear Mixing
9.2.2 Segregation
9.2.3 Other Classifications for Mixing Mechanisms
9.2.4 Horizontal Drum Blender Mechanism
9.3 Statistical Approach of Solids Mixing
9.3.1 Types of Mixtures
9.3.2 Sampling
9.3.3 Mixture Quality: Mixing Index and Rate
9.4 Powder Mixers
9.4.1 Tumbler Mixers
9.4.2 Horizontal and Vertical Trough Mixers
9.4.3 Vertical Screw Mixers
9.4.4 Fluidized Bed Mixers
9.4.5 Hopper Blenders
9.4.6 Continuous Blenders
9.5 Selection and Design Criteria
9.5.1 Factors Affecting Equipment Design
9.5.2 Mixer Selection Based on Flow Properties
9.5.3 Mixing in Food Powdered Product Development
9.5.4 Selection Based on Mixing Costs
9.6 Applications
References
10. Separation and Classification
10.1 Introduction to Dry Separation Techniques
10.2 Screening
10.2.1 Screening Fundamentals
10.2.2 Mass Balances in Screening
10.2.3 Operating Features
10.2.3.1 Capacity and Efficiency
10.2.3.2 Factors Affecting Efficiency
10.2.4 Equipment Used for Screening
10.2.5 Selection and Design
10.2.6 Applications
10.3 Dedusting Technology
10.3.1 Cyclone Separation
10.3.1.1 Theoretical Aspects
10.3.1.2 Dimensionless Approach
10.3.1.3 Operating Features and Selection Criteria
10.3.1.4 Applications
10.3.2 Gas Filtration
10.3.2.1 Filtering Fundamentals
10.3.2.2 Operation Characteristics
10.3.2.3 Applications
10.3.3 Other Gas-Solids Separation Techniques
10.3.3.1 Scrubbers
10.3.3.2 Electrostatic Precipitators
10.4 Air Classification
10.4.1 Introduction
10.4.2 Operating Principles
10.4.3 Efficiency and Cut Size
10.4.4 Applications
References
11. Drying
11.1 Spray Drying
11.1.1 Drying Process Layouts
11.1.2 Atomization Classification
11.1.2.1 Atomizers Using Centrifugal Energy
11.1.2.2 Atornizers Using Pressure Energy
11.1.2.3 Atomizers Using Kinetic Energy
11.1.2.4 Atomizers Using Acoustic/Pulsation Energy
11.1.3 Spray-Air Movement
11.1.4 Mass and Heat Balances
11.2 Freeze-Drying
11.2.1 Freeze-Drying Process
11.2.2 Fundamentals of Freeze-Drying
11.2.2.1 Freezing
11.2.2.2 Ice Sublimation
11.2.2.3 Water Vapor Condensation
11.2.3 Drying Equipment
11.2.3.1 Batch Freeze Dryer
11.2.3.2 Continuous Freeze Dryer
11.2.3.3 Microwave-Heating Freeze Dryer
11.2.3.4 Modified Freeze Dryers
11.3 Drum Drying
11.3.1 Drum Drying Process
11.3.2 Mass and Heat Transfer
11.3.3 Types of Drum Dryers
11.3.3.1 Single-Drum Dryer
11.3.3.2 Double-Drum Dryer
11.3.3.3 Twin-Drum Dryer
11.4 Final Remarks
References
12. Undesirable Phenomena and Their Relation to Processing
12.1 Attrition
12.1.1 Attrition Mechanisms
12.1.2 Attrition Tests
12.1.2.1 Single-Particle Tests
12.1.2.2 Multiple Particle Tests
12.1.3 Attrition Theory and Modeling
12.1.3.1 Particle Behavior Under Confined Uniaxial Compression
12.1.3.2 Particle Size Distribution Variation
12.1.3.3 Attrition Kinetics
12.1.3.4 Compaction Characteristics
12.1.3.5 Fractal Approach
12.1.4 Attrition Prevention
12.2 Segregation
12.2.1 Segregation Applications
12.2.2 Segregation Mechanisms
12.2.3 Segregation Evaluation
12.2.4 4 Segregation Kinetics
12.2.5 Segregation Minimization
12.3 Caking
12.3.1 Caking Mechanisms
12.3.2 Caking Evaluation by the Glass Transition Temperature
12.3.3 Caking Kinetics
12.3.4 Food Powders Affected by Caking
12.3.4.1 Carbohydrates
12.3.4.2 Milk Powders
12.3.4.3 Protein-Based Powders
12.3.5 Caking Prevention
12.3.6 Laboratory Techniques and Test Procedures
12.4 Detonation and Dust Explosion
12.4.1 Explosion Mechanisms
12.4.2 Factors Affecting Dust Explosions
12.4.3 Explosion Hazard Evaluation
12.4.3.1 Minimum Explosive Concentration (MEC)
12.4.3.2 Minimum Hazardous Mass (MHM)
12.4.3.3 Minimum Ignition Energy (MIE)
12.4.3.4 Minimum Ignition Temperature (MIT) and Maximum Oxygen Combustion (MOC)
12.4.4 Explosibility Classification
12.4.5 Dust Explosion Prevention
Attrition References
Segregation References
Caking References
Dust Explosion References
IndexPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=67737 Food powders. Physical properties, processing, and functionality. [texte imprimé] / Gustavo V. Barbosa-Cánovas ; Enrique Ortega-Rivas ; Pablo Juliano ; Hong Yan . - NEW YORK : Kluwer Academic/Plenum Publishers, 2005 . - 372 p.. - (Food engineering series) .
ISBN : 978-0-306-47806-2 : 115,15
Bibliographie
Illustrations
Index
Langues : Anglais (eng)
Catégories : Liste Plan de classement
16.10 (OPERATIONS MECANIQUES SUR LES SOLIDES LES POUDRES ET LES FLUIDES) [Classement Massy]
Thésaurus Agro-alimentaire
POUDRE ; PROPRIETE PHYSIQUE ; DENSITE ; SEPARATION ; PRODUIT ALIMENTAIRE ; ECHANTILLONNAGE ; STOCKAGE ; GRANULOMETRIE ; ENCAPSULATION ; MELANGE ; SECHAGE ; AGGLOMERATIONType de document : Livre Table des matières : PART 1: Food Powders Characterization
1. Sampling
1.1 Theory and Statistical Aspects
1.1.1 Introduction: Importance of Sampling
1.1.2 Sampling Variation Sources
1.1.3 Minimum Sample Size
1.1.4 Standard Sampling Deviation
1.2 Sampling Techniques and Procedures
1.3 Samplers and Sample Dividers
1.4 Sample Dispersion
References
2. Particle Properties
2.1 Particle Size and Shape
2.1.1 Introductory Definitions
2.1.2 Selection of Relevant Characteristic Particle Size
2.1.3 Shape of Particle Related to Sphericity
2.1.4 Evaluation of Shape Outline
2.2 Particle Density
2.2.1 Density Expressions
2.2.2 Liquid Pycnometry
2.2.3 Air Pycnometry
2.2.4 Aerodynamic Particle Density
2.3 Particle Size Distribution
2.3.1 Relevance of Particle Size Distribution
2.3.2 Types of Particle Size Distribution
2.3.3 Particle Size Distribution Tendencies
2.3.4 Presentation of Data
2.3.5 Size Distribution Functions
2.3.6 Analytical Techniques for Size Measurement
2.3.6.1 Sieving
2.3.6.2 Microscopy Techniques
2.3.6.3 Sedimentation
2.3.6.4 Stream Scanning
2.3.6.5 On-line Measurement Techniques
2.4 Other Primary Properties
2.4.1 Surface Area
2.4.1.1 Permeametry
2.4.1.2 Gas Adsorption
2.4.2 Moisture
References
3. Bulk Properties
3.1 Flow Properties
3.1.1 Introduction
3.1.2 Failure Properties
3.1.2.1 Definitions
3.1.2.2 Determinations Using Shear Cells
3.1.2.3 Direct Measurement of Failure Properties
3.1.3 Other Handling Properties
3.1.3.1 Angle of Repose
3.1.3.2 Angle of Slide
3.1.3.3 Conveying Angle
3.1.3.4 Angle of Spatula
3.2 Classification of Powders According to Handling
3.3 Packing Properties
3.3.1 Bulk Density and Porosity
3.3.1.1 Measurements of Bulk Density
3.3.1.2 Hausner Ratio
3.3.1.3 Factors Affecting Bulk Density
3.3.2 Compressibility
3.4 Strength Properties
3.4.1 Abrasion
3.4.2 Friability
3.5 Reconstitution Properties
3.5.1 Instantizing Processes
3.5.2 Instant Properties
3.5.3 Instant Property Evaluation
3.5.3.1 Penetration Speed Test
3.5.3.2 A Dynamic Wetting Test
3.5.3.3 Dispersibility Measuring Test
3.5.3.4 IDF Standard Method
References
PART II: Production, Handling, and Processing
4. Storage
4.1 Alternatives for Storage of Bulk Solids
4.1.1 Outdoors and Structured Storage
4.1.2 Storage in Containers
4.2 Principles Involved in Storage Bin Design
4.2.1 Basic Concepts of Bulk Solids Plant
4.2.1.1 Ratholes
4.2.1.2 Arching
4.2.1.3 Erratic Flow
4.2.1.4 Segregation and Flooding
4.2.2 Elements of Bulk Solids Gravity Flow
4.3 Flow Patterns in Storage Bins
4.3.1 Mass-Flow
4.3.2 Funnel-Flow
4.3.3 Expanded Flow
4.3.4 Symmetrical and Non-symmetrical Flow
4.4 Wall Stresses in Axi-Symmetrical Bins
4.4.1 Distribution of Bin Wall Loads
4.4.2 Calculation of Loads in Bins
4.5 Natural Discharge from Bins
4.5.1 Hopper Opening for Coarse Bulk Solids
4.5.1.1 Mass-Flow Rate Calculation
4.5.2 Hopper Opening for Fine Bulk Solids
4.5.3 Velocity Distribution in the Hopper
4.5.4 Factors Influencing Bin Geometry for Mass-Flow
4.5.5 Effect of the Gas Phase
4.6 Assisted Discharge
4.6.1 Passive Devices
4.6.2 Active Devices
4.6.3 Use of Feeders to Control Discharge
4.6.3.1 Volumetric Feeders
4.6.3.2 Gravimetric Feeders
4.6.3.3 Loads on a Hopper Feeder
References
5.Conveying
5.1 Introduction
5.2 Belt Conveyors
5.2.1 Components
5.2.2 Design Aspects
5.2.3 Applications
5.3 Chain Conveyors
5.3.1 Scraper Conveyors
5.3.2 Apron Conveyors
5.3.3 Bucket Elevators
5.4 Screw Conveyors
5.4.1 Main Features
5.4.2 Operating Characteristics
5.4.3 Capacity and Power
5.4.4 Main Applications
5.5 Pneumatic Conveying
5.5.1 Introduction
5.5.2 Theoretical Aspects
5.5.3 Classification of Conveying Systems
5.5.4 Dense-Phase Conveyors
5.5.4.1 Plug-Phase Conveyors
5.5.4.2 Fluidized Systems
5.5.4.3 Blow Tanks
5.5.4.4 Long Distance Systems
5.5.5 Dilute-Phase Conveyors
5.5.5.1 Types of Conveyors
5.5.5.2 Operating Features
5.5.5.3 System Components
5.5.5.4 Selection and Design
5.5.6 Applications
References
6. Size Reduction
6.1 Principles of Size Reduction
6.1.1 Introductory Aspects
6.1.2 Forces Used in Size Reduction
6.1.3 Mechanical Resistance Involved in Size Reduction
6.1.4 Properties of Comminuted Products
6.2 Energy Requirements: Comminution Laws
6.2.1 Rittinger's Law
6.2.2 Kick's Law
6.2.3 Bond's Law and Work Index
6.3 Size Reduction Equipment
6.3.1 Classification
6.3.2 Features
6.3.2.1 Crushing Rolls
6.3.2.2 Hammer Mills
6.3.2.3 Disc Attrition Mills
6.3.2.4 Tumbling Mills
6.3.3 Operation
6.4 Criteria for Selection of Comminution Processes
6.4.1 General Considerations
6.4.2 Hardness and Abrasiveness
6.4.3 Mechanical Structure
6.4.4 Moisture
6.4.5 Temperature Sensitivity
6.5 Applications
References
Size Enlargement
7.1 Introduction: Size Enlargement Processes
7.2 Aggregation Fundamentals
7.2.1 Mechanisms of particle Bonding
7.2.1.1 Solid Bridges
7.2.1.2 Immobile or Freely Movable Liquid Bridges
7.2.1.3 Attraction Forces Between Solid particles
7.2.1.4 Form-Closed Bonds or Interlocking Bonds
7.2.2 Strength of Agglomerates
7.3 Agglomeration Methods
7.3.1 Tumbling of Powders (Rewetting Agglomeration)
7.3.2 Pressure Agglomeration
7.3.3 Specific Agglomeration Methods
7.3.3.1 Straight-Through Agglomeration
7.3.3.2 Spray-Bed Dryer Agglomeration
7.3.3.3 Atomizer Wheel
7.3.3.4 Freeze-Drying
7.3.4 Binders
7.4 Selection Criteria for Agglomeration Methods
7.4.1 Feed Characteristics
7.4.2 Agglomerated Powder Properties
7.4.3 Alternative Methods
7.5 Design Aspects of Agglomeration Processes
7.6 Applications of Agglomeration
References
8. EncapsuIation Processes
8.1 Introduction
8.2 Microcapsules
8.2.1 Coating Material for Encapsulation
8.2.2 Types of Encapsulated Food Ingredients
8.2.3 Microcapsules: Their Structure and Release Mechanisms
8.3 Spray Drying
8.4 Extrusion
8.5 Molecular Inclusion in Cyclodextrins
8.6 Coacervation
8.7 Centrifugal Extrusion
8.8 Air Suspension Coating
8.9 Spray Chilling and Spray Cooling
8.10 Centrifugal Suspension-Separation
8.11 Freeze-Drying
8.12 Co-Crystallization
8.13 Final Remarks
References
9. Mixing
9.1 Introduction
9.2 Mixing Mechanisms
9.2.1 Convective, Diffusive, and Shear Mixing
9.2.2 Segregation
9.2.3 Other Classifications for Mixing Mechanisms
9.2.4 Horizontal Drum Blender Mechanism
9.3 Statistical Approach of Solids Mixing
9.3.1 Types of Mixtures
9.3.2 Sampling
9.3.3 Mixture Quality: Mixing Index and Rate
9.4 Powder Mixers
9.4.1 Tumbler Mixers
9.4.2 Horizontal and Vertical Trough Mixers
9.4.3 Vertical Screw Mixers
9.4.4 Fluidized Bed Mixers
9.4.5 Hopper Blenders
9.4.6 Continuous Blenders
9.5 Selection and Design Criteria
9.5.1 Factors Affecting Equipment Design
9.5.2 Mixer Selection Based on Flow Properties
9.5.3 Mixing in Food Powdered Product Development
9.5.4 Selection Based on Mixing Costs
9.6 Applications
References
10. Separation and Classification
10.1 Introduction to Dry Separation Techniques
10.2 Screening
10.2.1 Screening Fundamentals
10.2.2 Mass Balances in Screening
10.2.3 Operating Features
10.2.3.1 Capacity and Efficiency
10.2.3.2 Factors Affecting Efficiency
10.2.4 Equipment Used for Screening
10.2.5 Selection and Design
10.2.6 Applications
10.3 Dedusting Technology
10.3.1 Cyclone Separation
10.3.1.1 Theoretical Aspects
10.3.1.2 Dimensionless Approach
10.3.1.3 Operating Features and Selection Criteria
10.3.1.4 Applications
10.3.2 Gas Filtration
10.3.2.1 Filtering Fundamentals
10.3.2.2 Operation Characteristics
10.3.2.3 Applications
10.3.3 Other Gas-Solids Separation Techniques
10.3.3.1 Scrubbers
10.3.3.2 Electrostatic Precipitators
10.4 Air Classification
10.4.1 Introduction
10.4.2 Operating Principles
10.4.3 Efficiency and Cut Size
10.4.4 Applications
References
11. Drying
11.1 Spray Drying
11.1.1 Drying Process Layouts
11.1.2 Atomization Classification
11.1.2.1 Atomizers Using Centrifugal Energy
11.1.2.2 Atornizers Using Pressure Energy
11.1.2.3 Atomizers Using Kinetic Energy
11.1.2.4 Atomizers Using Acoustic/Pulsation Energy
11.1.3 Spray-Air Movement
11.1.4 Mass and Heat Balances
11.2 Freeze-Drying
11.2.1 Freeze-Drying Process
11.2.2 Fundamentals of Freeze-Drying
11.2.2.1 Freezing
11.2.2.2 Ice Sublimation
11.2.2.3 Water Vapor Condensation
11.2.3 Drying Equipment
11.2.3.1 Batch Freeze Dryer
11.2.3.2 Continuous Freeze Dryer
11.2.3.3 Microwave-Heating Freeze Dryer
11.2.3.4 Modified Freeze Dryers
11.3 Drum Drying
11.3.1 Drum Drying Process
11.3.2 Mass and Heat Transfer
11.3.3 Types of Drum Dryers
11.3.3.1 Single-Drum Dryer
11.3.3.2 Double-Drum Dryer
11.3.3.3 Twin-Drum Dryer
11.4 Final Remarks
References
12. Undesirable Phenomena and Their Relation to Processing
12.1 Attrition
12.1.1 Attrition Mechanisms
12.1.2 Attrition Tests
12.1.2.1 Single-Particle Tests
12.1.2.2 Multiple Particle Tests
12.1.3 Attrition Theory and Modeling
12.1.3.1 Particle Behavior Under Confined Uniaxial Compression
12.1.3.2 Particle Size Distribution Variation
12.1.3.3 Attrition Kinetics
12.1.3.4 Compaction Characteristics
12.1.3.5 Fractal Approach
12.1.4 Attrition Prevention
12.2 Segregation
12.2.1 Segregation Applications
12.2.2 Segregation Mechanisms
12.2.3 Segregation Evaluation
12.2.4 4 Segregation Kinetics
12.2.5 Segregation Minimization
12.3 Caking
12.3.1 Caking Mechanisms
12.3.2 Caking Evaluation by the Glass Transition Temperature
12.3.3 Caking Kinetics
12.3.4 Food Powders Affected by Caking
12.3.4.1 Carbohydrates
12.3.4.2 Milk Powders
12.3.4.3 Protein-Based Powders
12.3.5 Caking Prevention
12.3.6 Laboratory Techniques and Test Procedures
12.4 Detonation and Dust Explosion
12.4.1 Explosion Mechanisms
12.4.2 Factors Affecting Dust Explosions
12.4.3 Explosion Hazard Evaluation
12.4.3.1 Minimum Explosive Concentration (MEC)
12.4.3.2 Minimum Hazardous Mass (MHM)
12.4.3.3 Minimum Ignition Energy (MIE)
12.4.3.4 Minimum Ignition Temperature (MIT) and Maximum Oxygen Combustion (MOC)
12.4.4 Explosibility Classification
12.4.5 Dust Explosion Prevention
Attrition References
Segregation References
Caking References
Dust Explosion References
IndexPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=67737 Réservation
Réserver ce documentExemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Bibliothèque OPERATIONS UNITAIRES BAR 16.10 Papier 33004000530124 Empruntable Handbook of biochemistry and molecular biology. (2. Vol.) Vol. 1 : Physical and chemical data. / G.D. Fasman (1976)
PermalinkPermalinkPermalinkPermalinkPermalinkPermalinkJus de fruits et de légumes. Spécifications et méthodes d'analyse. (1996)
PermalinkMéthodes pour le prélèvement et l'analyse des jus de fruits et de légumes. (1945)
PermalinkOil absorption during deep-fat frying: mechanisms and important factors. / Aman Mohammad Ziaiifar (09/12/2008)
PermalinkPhysical and chemical methods of sugar analysis. A practical and descriptive treatise for use in research, technical, and control laboratories. / C.A. Browne (1941)
PermalinkPermalinkPermalinkPermalinkProceedings of the 6th conference of food engineering (CoFE '99) : held in conjunction with the 1999 AIChE annual meeting, October 31 - November 5, 1999, Dallas, TX (1999)
PermalinkPermalinkPermalinkPermalinkPermalinkTreatise on analytical chemistry. (3 Parts) Part 1 : Theory and practice. (12 Vol.) Vol. 7. / I.M. Kolthoff (1967)
Permalink