Catégories
RAMEAU , Nom commun , Bactériophages
BactériophagesSynonyme(s)Bactéries -- Virus ;Bactériophagie ;Phages ;Procaryotes -- Virus ;Virus des bactéries Virus des procaryotes |



Biotechnology of lactic acid bacteria : novels applications (2016)
Titre : Biotechnology of lactic acid bacteria : novels applications Type de document : texte imprimé Auteurs : Fernanda Mozzi, Editeur scientifique ; Raúl R. Raya, Editeur scientifique ; Graciela M. Vignolo, Editeur scientifique Mention d'édition : 2nd ed. Editeur : CHICHESTER : John Wiley & Sons, Ltd Année de publication : 2016 Importance : 1 vol. (XVIII-374 p.) Présentation : ill., couv. ill. en coul. Format : 25 cm ISBN/ISSN/EAN : 978-1-118-86840-9 Note générale : Bibliogr. Index Langues : Anglais (eng) Catégories : Liste Plan de classement
2.2 (MICROBIOLOGIE) [Classement Massy]
RAMEAU
Lactobacillacées ; Métabolisme ; Génomique ; Bactériophages ; intestins -- microbiologie ; Probiotiques ; Santé animale ; Protéomique ; Bifidobacterium ; Allergie respiratoire ; Maladies infectieuses ; Fermentation ; Produits laitiers ; Viande ; Légumes ; Fruits ; Fermentation malolactique ; Vin ; Aromatisants ; Vitamines ; Aliments fonctionnels ; Aliments -- Saveur ; Aliments -- Odeur ; Biofilms ; Élevage ; Allergie ; Cacao ; Aliments fermentésRésumé : Lactic acid bacteria (LAB) have historically been used as starter cultures for the production of fermented foods, especially dairy products. Over recent years, new areas have had a strong impact on LAB studies: the application of "omics" tools; the study of complex microbial ecosystems, the discovery of new LAB species, and the use of LAB as powerhouses in the food and medical industries.
This second edition of Biotechnology of Lactic Acid Bacteria: Novel Applications addresses the major advances in the fields over the last five years. Thoroughly revised and updated, the book includes new chapters. Among them:
The current status of LAB systematics;
The role of LAB in the human intestinal microbiome and the intestinal tract of animals and its impact on the health and disease state of the host;
The involvement of LAB in fruit and vegetable fermentations;
The production of nutraceuticals and aroma compounds by LAB; and
The formation of biofilms by LAB.
This book is an essential reference for established researchers and scientists, clinical and advanced students, university professors and instructors, nutritionists and food technologists working on food microbiology, physiology and biotechnology of lactic acid bacteria.Type de document : Livre Table des matières : 1. Updates on Metabolism in Lactic Acid Bacteria in Light of “Omic” Technologies
Magdalena Kowalczyk, Baltasar Mayo, María Fernández, and Tamara Aleksandrzak-Piekarczyk
1.1. Sugar Metabolism
1.1.1. Practical Aspects of Sugar Catabolism
1.2. Citrate Metabolism and Formation of Aroma Compounds
1.2.1. Citrate Transport
1.2.2. Conversion of Citrate into Pyruvate and Production of Aroma Compounds
1.2.3. Conversion of Citrate into Succinate
1.2.4. Bioenergetics of Citrate Metabolism
1.3. The Proteolytic System of Lactic Acid Bacteria
1.3.1. Protein Degradation
1.3.2. Peptidases
1.3.3. Technological Applications of the Proteolytic System
1.3.4. Amino Acid Catabolism
1.4. LAB Metabolism in Light of Genomics, Comparative Genomics and Metagenomics
1.5. Novel Aspects of Metabolism Regulation in the Post-genomic Age
1.6. Functional Genomics and Metabolism
1.6.1. Transcriptomics Proteomics and Metabolomics
1.6.2. Global Phenotypic Characterization of Microbial Cells
1.7. Systems Biology of LAB
2. Systematics of Lactic Acid Bacteria: Current Status
Giovanna E. Felis, Elisa Salvetti, and Sandra Torriani
2.1. Families and Genera of Lactic Acid Bacteria
2.2. A Focus on the Family Lactobacillaceae
2.3. Taxonomic Tools in the Genomic Era
3. Genomic Evolution of Lactic Acid Bacteria: From Single Gene Function to the Pan-genome
Grace L. Douglas, M. Andrea Azcarate-Peri,l and Todd R. Klaenhammer
3.1. The Genomics Revolution
3.2. Genomic Adaptations of LAB to the Environment
3.2.1. LAB Evolution in the Dairy Environment
3.2.2. LAB Evolution in Vegetable and Meat Fermentations
3.2.3. Fast-evolving LAB
3.2.4. LAB in the GI Tract
3.3. “Probiotic Islands”?
3.4. Stress Resistance and Quorum Sensing Mechanisms
3.5. The Impact of Genome Sequencing on Characterization Taxonomy and Pan-genome Development of
Lactic Acid Bacteria
3.6. Functional Genomic Studies to Unveil Novel LAB Utilities
4. Lactic Acid Bacteria: Comparative Genomic Analyses of Transport Systems
Graciela L. Lorca, Taylor A. Twiddy, and Milton H. Saier Jr.
4.1. Introduction
4.2. Channel-forming Proteins
4.3. The Major Facilitator Superfamily
4.4. Other Large Superfamilies of Secondary Carriers
4.5. ABC Transporters
4.6. Heavy Metal Transporters
4.7. P-type ATPases in Prokaryotes
4.8. The Prokaryote-specific Phosphotransferase System (PTS)
4.9. Multidrug Resistance Pumps
4.10. Nutrient Transport in LAB
4.11. Conclusions and Perspectives
5. Novel Developments in Bacteriocins from Lactic Acid Bacteria
Ingolf F. Nes, Christina Gabrielsen, Dag A. Brede, and Dzung B. Diep
5.1. Introduction
5.2. Characteristics and Classification of Bacteriocins
5.2.1. Class Ia: Lantibiotics
5.2.2. Class II: The Non-lantibiotics
5.3. Mode of Action
5.4. Bacteriocin Resistance
5.5. Applications
5.5.1. Opportunities and Hurdles in Application of Bacteriocins
5.5.2. Application of Bacteriocins in Medical-related and Personal Hygiene Products
5.5.3. Bacteriocin-producing Probiotics
5.6. Future Perspectives
6. Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools
Beatriz Martínez, Pilar García, Ana Rodríguez, Mariana Piuri, and Raúl R. Raya
6.1. Introduction
6.2. Bacteriophages of Lactic Acid Bacteria
6.2.1. Classification of Lactococcal Phages
6.3. Antiphage Strategies
6.3.1. Natural Mechanisms of Phage Resistance
6.3.2. Genetically Engineered Antiphage Systems
6.4. Phage-Based Molecular Tools
6.4.1. Phage Integrases and Integration Vectors
6.4.2. CRISPR Applications
6.4.3. Recombineering
6.5. LAB Phages as Biocontrol Tools
6.6. Conclusions
7. Lactic Acid Bacteria and the Human Intestinal Microbiome
François P. Douillard and Willem M. de Vos
7.1. Introduction
7.2. Ecology of the Human Intestinal Tract
7.2.1. The Human Microbiome in the Upper and Lower Intestinal Tract
7.2.2. Lactic Acid Bacteria Associated with the Human Intestine
7.2.3. Metagenomic Studies of the Intestine in Relation to LAB
7.3. A Case Study: The Lactobacillus rhamnosus Species
7.3.1. Genomic Diversity of Lact. rhamnosus and Intestinal Adaptation
7.3.2. Lact. rhamnosus Metabolism and Adaptation to the Intestine
7.3.3. Host Interaction Factors in Lact. rhamnosus
7.3.4. The Lact. rhamnosus Species: Autochthonous or Allochthonous in the Human Intestine?
7.4. Concluding Perspectives and Future Directions
8. Probiotics and Functional Foods in Immunosupressed Hosts
Ivanna Novotny Nuñez, Martin Manuel Palomar, Alejandra de Moreno de LeBlanc, Carolina Maldonado Galdeano, and Gabriela Perdigón
8.1. Introduction
8.2. Probiotic Fermented Milk in a Malnutrition Model
8.3. Probiotic Administration in Stress Process
8.4. Conclusions
9. Lactic Acid Bacteria in Animal Production and Health
Damien Bouchard, Sergine Even, and Yves Le Loir
9.1. Introduction
9.2. Lactic Acid Bacteria and Probiotics
9.3. Classifications and Regulatory Criteria of Probiotics in Animal Health
9.4. Probiotic LAB and Animal Production Sectors
9.4.1. Probiotics in Ruminants
9.4.2. Probiotics in Pigs
9.4.3. Probiotics in Poultry
9.5. Conclusions
10. Proteomics for Studying Probiotic Traits
Rosa Anna Siciliano and Maria Fiorella Mazzeo
10.1. Introduction
10.2. Mass Spectrometric Methodologies in Proteomics
10.2.1. The Classical Approach: 2-DE Separation and Protein Identification by Mass Spectrometry
10.2.2. Gel-Free Proteomic Approaches
10.3. Proteomics for Studying Molecular Mechanisms of Probiotic Action
10.3.1. Adaptation Mechanisms to the GIT Environment
10.3.2. Adhesion Mechanisms to the Host Mucosa
10.3.3. Molecular Mechanisms of Probiotic Immunomodulatory Effects
10.3.4. Probiotics and Prebiotics
10.4. Concluding Remarks and Future Directions
11. Engineering Lactic Acid Bacteria and Bifidobacteria for Mucosal Delivery of Health Molecules
Thibault Allain, Camille Aubry, Jane M. Natividad, Jean-Marc Chatel, Philippe Langella, and Luis G. Bermúdez-Humarán
11.1. Introduction
11.2. Lactococcus lactis: A Pioneer Bacterium
11.3. Lactobacillus spp. as a Delivery Vector
11.4. Bifidobacteria as a New Live Delivery Vehicle
11.5. Engineering Genetic Tools for Protein and DNA Delivery
11.5.1. Cloning Vectors
11.5.2. Expression Systems
11.6. Therapeutic Applications
11.6.1. Inflammatory Bowel Disease (IBD)
11.6.2. Anti-protease Enzyme-producing LAB: The Tole of Elafin
11.6.3. Antioxidant Enzyme-producing Lactococci and Lactobacilli
11.7. Allergy
11.7.1. Use of LAB in Food Allergy
11.7.2. Allergic Airways Diseases
11.8. Autoimmune Diseases
11.8.1. Type 1 Diabetes Mellitus
11.8.2. Celiac Disease
11.9. Infectious Diseases
11.9.1. Mucosal Delivery of Bacterial Antigens
11.9.2. Mucosal Delivery of Viral Antigens
11.9.3. Parasitic Diseases
12. Lactic Acid Bacteria for Dairy Fermentations: Specialized Starter Cultures to Improve Dairy Products
Domenico Carminati, Giorgio Giraffa, Miriam Zago, Mariángeles Briggiler Marcó, Daniela Guglielmotti, Ana Binetti, and Jorge Reinheimer
12.1. Introduction
12.2. Adjunct Cultures
12.2.1. Ripening Cultures
12.2.2. Protective Cultures
12.2.3. Probiotic Cultures
12.2.4. Exopolysaccharide-producing Starters
12.3. Phage-Resistant Starters
12.4. New Sources of Starter Strains
12.5. Conclusions
13. Lactobacillus sakei in Meat Fermentation
Marie-Christine Champomier-Vergès and Monique Zagorec
13.1. Introduction
13.2. Genomics and Diversity of the Species Lactobacillus sakei
13.3. Post-genomic Vision of Meat Fitness Traits of Lactobacillus sakei
13.3.1. Energy Sources
13.3.2. Stress Response
13.4. Conclusions
14. Vegetable and Fruit Fermentation by Lactic Acid Bacteria
Raffaella Di Cagno, Pasquale Filannino, and Marco Gobbetti
14.1. Introduction
14.2. Lactic Acid Bacteria Microbiota of Raw Vegetables and Fruits
14.3. Fermentation of Vegetable Products
14.3.1. Spontaneous Fermentation
14.3.2. The Autochthonous Starters
14.4. Main Fermented Vegetable Products
14.4.1. Sauerkrauts
14.4.2. Kimchi
14.4.3. Pickled Cucumbers
14.5. Physiology and Biochemistry of LAB during Vegetable and Fruit Fermentation
14.5.1. Metabolic Adaptation by LAB during Plant Fermentation
14.6. Food Phenolic Compounds: Antimicrobial Activity and Microbial Responses
14.6.1. Effect of Phenolics on the Growth and Viability of LAB
14.6.2. Metabolism of Phenolics by LAB
14.7. Health-promoting Properties of Fermented Vegetables and Fruits
14.8. Alternative Sources of Novel Probiotics Candidates
14.9. Vehicles for Delivering Probiotics
14.10. Conclusions
15. Lactic Acid Bacteria and Malolactic Fermentation in Wine
Aline Lonvaud-Funel
15.1. Introduction
15.2. The Lactic Acid Bacteria of Wine
15.2.1. Origin
15.2.2. Species
15.2.3. Identification
15.2.4. Typing at Strain Level
15.2.5. Detection of Specific Strains
15.3. The Oenococcus Oeni Species
15.4. Evolution of Lactic Acid Bacteria during Winemaking
15.4.1. Interactions between Wine Microorganisms
15.4.2. Environmental Factors
15.5. Lactic Acid Bacteria Metabolism and its Impact on Wine Quality
15.5.1. Sugars
15.5.2. Carboxylic Acids
15.5.3. Amino Acids
15.5.4. Other Metabolisms with Sensorial Impact
15.6. Controlling the Malolactic Fermentation
15.7. Conclusions
16. The Functional Role of Lactic Acid Bacteria in Cocoa Bean Fermentation
Luc De Vuyst and Stefan Weckx
16.1. Introduction
16.2. Cocoa Crop Cultivation and Harvest
16.3. The Cocoa Pulp or Fermentation Substrate
16.4. Fresh Unfermented Cocoa Beans
16.5. Cocoa Bean Fermentation
16.5.1. Rationale
16.5.2. Farming Practices
16.6. Succession of Microorganisms during Cocoa Bean Fermentation
16.6.1. The Spontaneous Three-phase Cocoa Bean Fermentation Process
16.6.2. Yeast Fermentation
16.6.3. LAB Fermentation
16.6.4. AAB Fermentation
16.7. Biochemical Changes in the Cocoa Beans during Fermentation and Drying
16.8. Optimal Fermentation Course and End of Fermentation
16.9. Further Processing of Fermented Cocoa Beans
16.9.1. Drying of Fermented Cocoa Beans
16.9.2. Roasting of Fermented Dry Cocoa Beans
16.10. Use of Starter Cultures for Cocoa Bean Fermentation
16.10.1. Rationale
16.10.2. Experimental Use of Cocoa Bean Starter Cultures
16.11. Concluding Remarks
17. B-Group Vitamins Production by Probiotic Lactic Acid Bacteria
Jean Guy LeBlanc, Jonathan Emiliano Laiño, Marianela Juárez del Valle, Graciela Savoy de Giori, Fernando Sesma, and María Pía Taranto
17.1. Introduction
17.2. B-Group Vitamins
17.2.1. Riboflavin (Vitamin B2)
17.2.2. Folates (Vitamin B9)
17.3. Probiotics In Situ
17.3.1. Vitamin B12 (Cobalamin)
17.3.2. Cobalamin Biosynthesis by Lactobacillus reuteri
17.4. Conclusions
18. Nutraceutics and High Value Metabolites Produced by Lactic Acid Bacteria
Elvira M. Hebert, Graciela Savoy de Giori, and Fernanda Mozzi
18.1. Introduction
18.2. Nutraceutics
18.2.1. Low-calorie Sugars
18.2.2. Short-Chain Fatty Acids
18.2.3. Conjugated Linoleic Acid (CLA)
18.2.4. Bioactive Peptides
18.2.5. Gamma-aminobutyric Acid (GABA)
18.2.6. Vitamins
18.3. Exopolysaccharides
18.4. Commodity Chemicals
18.5. Conclusions
19. Production of Flavor Compounds by Lactic Acid Bacteria in Fermented Foods
Anne Thierry, Tomislav Pogačic, Magalie Weber, and Sylvie Lortal
19.1. Introduction
19.2. Flavor and Aroma Compounds
19.2.1. Volatile Compounds: Diversity Analytical Methods
19.2.2. Contribution of Volatile Aroma Compounds to Flavor
19.2.3. Origin of Aroma Compounds
19.3. LAB of Fermented Foods and their Role in Flavor Formation
19.3.1. Biochemical Processes of Flavor Compound Formation in Food and Potential of LAB
19.3.2. Flavor Compounds Produced from Carbohydrate Fermentation by LAB
19.3.3. Flavor Compounds from Amino Acid Conversion by LAB
19.3.4. Flavor Compounds from Lipids in LAB
19.3.5. Synthesis of Esters
19.3.6. Interspecies and Intraspecies Variations of Aroma Compound Production
19.4. Biotic and Abiotic Factors Modulating the Contribution of LAB to Flavor Formation
19.4.1. General Scheme of Flavor Formation in Fermented Foods In Situ
19.4.2. Factors Modulating the Expression of the Flavor-related Activities of LAB
19.4.3. Factors Determining the Real Contribution of LAB to Food Flavor
19.5. Conclusions and Research Perspectives
20. Lactic Acid Bacteria Biofilms: From their Formation to their Health and Biotechnological Potential
Jean-Christophe Piard and Romain Briandet
20.1. Lactic Acid Bacteria Biofilms are Ubiquitous in a Wide Variety of Environments from Nature to Domesticated Settings
20.2. Biofilm Life Cycle and Bacterial Factors Involved in LAB Biofilm Lifestyle
20.3. Health and Biotechnological Potential of LAB Biofilms and Underlying Mechanisms
20.4. ConclusionsPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=195809 Biotechnology of lactic acid bacteria : novels applications [texte imprimé] / Fernanda Mozzi, Editeur scientifique ; Raúl R. Raya, Editeur scientifique ; Graciela M. Vignolo, Editeur scientifique . - 2nd ed. . - CHICHESTER : John Wiley & Sons, Ltd, 2016 . - 1 vol. (XVIII-374 p.) : ill., couv. ill. en coul. ; 25 cm.
ISBN : 978-1-118-86840-9
Bibliogr. Index
Langues : Anglais (eng)
Catégories : Liste Plan de classement
2.2 (MICROBIOLOGIE) [Classement Massy]
RAMEAU
Lactobacillacées ; Métabolisme ; Génomique ; Bactériophages ; intestins -- microbiologie ; Probiotiques ; Santé animale ; Protéomique ; Bifidobacterium ; Allergie respiratoire ; Maladies infectieuses ; Fermentation ; Produits laitiers ; Viande ; Légumes ; Fruits ; Fermentation malolactique ; Vin ; Aromatisants ; Vitamines ; Aliments fonctionnels ; Aliments -- Saveur ; Aliments -- Odeur ; Biofilms ; Élevage ; Allergie ; Cacao ; Aliments fermentésRésumé : Lactic acid bacteria (LAB) have historically been used as starter cultures for the production of fermented foods, especially dairy products. Over recent years, new areas have had a strong impact on LAB studies: the application of "omics" tools; the study of complex microbial ecosystems, the discovery of new LAB species, and the use of LAB as powerhouses in the food and medical industries.
This second edition of Biotechnology of Lactic Acid Bacteria: Novel Applications addresses the major advances in the fields over the last five years. Thoroughly revised and updated, the book includes new chapters. Among them:
The current status of LAB systematics;
The role of LAB in the human intestinal microbiome and the intestinal tract of animals and its impact on the health and disease state of the host;
The involvement of LAB in fruit and vegetable fermentations;
The production of nutraceuticals and aroma compounds by LAB; and
The formation of biofilms by LAB.
This book is an essential reference for established researchers and scientists, clinical and advanced students, university professors and instructors, nutritionists and food technologists working on food microbiology, physiology and biotechnology of lactic acid bacteria.Type de document : Livre Table des matières : 1. Updates on Metabolism in Lactic Acid Bacteria in Light of “Omic” Technologies
Magdalena Kowalczyk, Baltasar Mayo, María Fernández, and Tamara Aleksandrzak-Piekarczyk
1.1. Sugar Metabolism
1.1.1. Practical Aspects of Sugar Catabolism
1.2. Citrate Metabolism and Formation of Aroma Compounds
1.2.1. Citrate Transport
1.2.2. Conversion of Citrate into Pyruvate and Production of Aroma Compounds
1.2.3. Conversion of Citrate into Succinate
1.2.4. Bioenergetics of Citrate Metabolism
1.3. The Proteolytic System of Lactic Acid Bacteria
1.3.1. Protein Degradation
1.3.2. Peptidases
1.3.3. Technological Applications of the Proteolytic System
1.3.4. Amino Acid Catabolism
1.4. LAB Metabolism in Light of Genomics, Comparative Genomics and Metagenomics
1.5. Novel Aspects of Metabolism Regulation in the Post-genomic Age
1.6. Functional Genomics and Metabolism
1.6.1. Transcriptomics Proteomics and Metabolomics
1.6.2. Global Phenotypic Characterization of Microbial Cells
1.7. Systems Biology of LAB
2. Systematics of Lactic Acid Bacteria: Current Status
Giovanna E. Felis, Elisa Salvetti, and Sandra Torriani
2.1. Families and Genera of Lactic Acid Bacteria
2.2. A Focus on the Family Lactobacillaceae
2.3. Taxonomic Tools in the Genomic Era
3. Genomic Evolution of Lactic Acid Bacteria: From Single Gene Function to the Pan-genome
Grace L. Douglas, M. Andrea Azcarate-Peri,l and Todd R. Klaenhammer
3.1. The Genomics Revolution
3.2. Genomic Adaptations of LAB to the Environment
3.2.1. LAB Evolution in the Dairy Environment
3.2.2. LAB Evolution in Vegetable and Meat Fermentations
3.2.3. Fast-evolving LAB
3.2.4. LAB in the GI Tract
3.3. “Probiotic Islands”?
3.4. Stress Resistance and Quorum Sensing Mechanisms
3.5. The Impact of Genome Sequencing on Characterization Taxonomy and Pan-genome Development of
Lactic Acid Bacteria
3.6. Functional Genomic Studies to Unveil Novel LAB Utilities
4. Lactic Acid Bacteria: Comparative Genomic Analyses of Transport Systems
Graciela L. Lorca, Taylor A. Twiddy, and Milton H. Saier Jr.
4.1. Introduction
4.2. Channel-forming Proteins
4.3. The Major Facilitator Superfamily
4.4. Other Large Superfamilies of Secondary Carriers
4.5. ABC Transporters
4.6. Heavy Metal Transporters
4.7. P-type ATPases in Prokaryotes
4.8. The Prokaryote-specific Phosphotransferase System (PTS)
4.9. Multidrug Resistance Pumps
4.10. Nutrient Transport in LAB
4.11. Conclusions and Perspectives
5. Novel Developments in Bacteriocins from Lactic Acid Bacteria
Ingolf F. Nes, Christina Gabrielsen, Dag A. Brede, and Dzung B. Diep
5.1. Introduction
5.2. Characteristics and Classification of Bacteriocins
5.2.1. Class Ia: Lantibiotics
5.2.2. Class II: The Non-lantibiotics
5.3. Mode of Action
5.4. Bacteriocin Resistance
5.5. Applications
5.5.1. Opportunities and Hurdles in Application of Bacteriocins
5.5.2. Application of Bacteriocins in Medical-related and Personal Hygiene Products
5.5.3. Bacteriocin-producing Probiotics
5.6. Future Perspectives
6. Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools
Beatriz Martínez, Pilar García, Ana Rodríguez, Mariana Piuri, and Raúl R. Raya
6.1. Introduction
6.2. Bacteriophages of Lactic Acid Bacteria
6.2.1. Classification of Lactococcal Phages
6.3. Antiphage Strategies
6.3.1. Natural Mechanisms of Phage Resistance
6.3.2. Genetically Engineered Antiphage Systems
6.4. Phage-Based Molecular Tools
6.4.1. Phage Integrases and Integration Vectors
6.4.2. CRISPR Applications
6.4.3. Recombineering
6.5. LAB Phages as Biocontrol Tools
6.6. Conclusions
7. Lactic Acid Bacteria and the Human Intestinal Microbiome
François P. Douillard and Willem M. de Vos
7.1. Introduction
7.2. Ecology of the Human Intestinal Tract
7.2.1. The Human Microbiome in the Upper and Lower Intestinal Tract
7.2.2. Lactic Acid Bacteria Associated with the Human Intestine
7.2.3. Metagenomic Studies of the Intestine in Relation to LAB
7.3. A Case Study: The Lactobacillus rhamnosus Species
7.3.1. Genomic Diversity of Lact. rhamnosus and Intestinal Adaptation
7.3.2. Lact. rhamnosus Metabolism and Adaptation to the Intestine
7.3.3. Host Interaction Factors in Lact. rhamnosus
7.3.4. The Lact. rhamnosus Species: Autochthonous or Allochthonous in the Human Intestine?
7.4. Concluding Perspectives and Future Directions
8. Probiotics and Functional Foods in Immunosupressed Hosts
Ivanna Novotny Nuñez, Martin Manuel Palomar, Alejandra de Moreno de LeBlanc, Carolina Maldonado Galdeano, and Gabriela Perdigón
8.1. Introduction
8.2. Probiotic Fermented Milk in a Malnutrition Model
8.3. Probiotic Administration in Stress Process
8.4. Conclusions
9. Lactic Acid Bacteria in Animal Production and Health
Damien Bouchard, Sergine Even, and Yves Le Loir
9.1. Introduction
9.2. Lactic Acid Bacteria and Probiotics
9.3. Classifications and Regulatory Criteria of Probiotics in Animal Health
9.4. Probiotic LAB and Animal Production Sectors
9.4.1. Probiotics in Ruminants
9.4.2. Probiotics in Pigs
9.4.3. Probiotics in Poultry
9.5. Conclusions
10. Proteomics for Studying Probiotic Traits
Rosa Anna Siciliano and Maria Fiorella Mazzeo
10.1. Introduction
10.2. Mass Spectrometric Methodologies in Proteomics
10.2.1. The Classical Approach: 2-DE Separation and Protein Identification by Mass Spectrometry
10.2.2. Gel-Free Proteomic Approaches
10.3. Proteomics for Studying Molecular Mechanisms of Probiotic Action
10.3.1. Adaptation Mechanisms to the GIT Environment
10.3.2. Adhesion Mechanisms to the Host Mucosa
10.3.3. Molecular Mechanisms of Probiotic Immunomodulatory Effects
10.3.4. Probiotics and Prebiotics
10.4. Concluding Remarks and Future Directions
11. Engineering Lactic Acid Bacteria and Bifidobacteria for Mucosal Delivery of Health Molecules
Thibault Allain, Camille Aubry, Jane M. Natividad, Jean-Marc Chatel, Philippe Langella, and Luis G. Bermúdez-Humarán
11.1. Introduction
11.2. Lactococcus lactis: A Pioneer Bacterium
11.3. Lactobacillus spp. as a Delivery Vector
11.4. Bifidobacteria as a New Live Delivery Vehicle
11.5. Engineering Genetic Tools for Protein and DNA Delivery
11.5.1. Cloning Vectors
11.5.2. Expression Systems
11.6. Therapeutic Applications
11.6.1. Inflammatory Bowel Disease (IBD)
11.6.2. Anti-protease Enzyme-producing LAB: The Tole of Elafin
11.6.3. Antioxidant Enzyme-producing Lactococci and Lactobacilli
11.7. Allergy
11.7.1. Use of LAB in Food Allergy
11.7.2. Allergic Airways Diseases
11.8. Autoimmune Diseases
11.8.1. Type 1 Diabetes Mellitus
11.8.2. Celiac Disease
11.9. Infectious Diseases
11.9.1. Mucosal Delivery of Bacterial Antigens
11.9.2. Mucosal Delivery of Viral Antigens
11.9.3. Parasitic Diseases
12. Lactic Acid Bacteria for Dairy Fermentations: Specialized Starter Cultures to Improve Dairy Products
Domenico Carminati, Giorgio Giraffa, Miriam Zago, Mariángeles Briggiler Marcó, Daniela Guglielmotti, Ana Binetti, and Jorge Reinheimer
12.1. Introduction
12.2. Adjunct Cultures
12.2.1. Ripening Cultures
12.2.2. Protective Cultures
12.2.3. Probiotic Cultures
12.2.4. Exopolysaccharide-producing Starters
12.3. Phage-Resistant Starters
12.4. New Sources of Starter Strains
12.5. Conclusions
13. Lactobacillus sakei in Meat Fermentation
Marie-Christine Champomier-Vergès and Monique Zagorec
13.1. Introduction
13.2. Genomics and Diversity of the Species Lactobacillus sakei
13.3. Post-genomic Vision of Meat Fitness Traits of Lactobacillus sakei
13.3.1. Energy Sources
13.3.2. Stress Response
13.4. Conclusions
14. Vegetable and Fruit Fermentation by Lactic Acid Bacteria
Raffaella Di Cagno, Pasquale Filannino, and Marco Gobbetti
14.1. Introduction
14.2. Lactic Acid Bacteria Microbiota of Raw Vegetables and Fruits
14.3. Fermentation of Vegetable Products
14.3.1. Spontaneous Fermentation
14.3.2. The Autochthonous Starters
14.4. Main Fermented Vegetable Products
14.4.1. Sauerkrauts
14.4.2. Kimchi
14.4.3. Pickled Cucumbers
14.5. Physiology and Biochemistry of LAB during Vegetable and Fruit Fermentation
14.5.1. Metabolic Adaptation by LAB during Plant Fermentation
14.6. Food Phenolic Compounds: Antimicrobial Activity and Microbial Responses
14.6.1. Effect of Phenolics on the Growth and Viability of LAB
14.6.2. Metabolism of Phenolics by LAB
14.7. Health-promoting Properties of Fermented Vegetables and Fruits
14.8. Alternative Sources of Novel Probiotics Candidates
14.9. Vehicles for Delivering Probiotics
14.10. Conclusions
15. Lactic Acid Bacteria and Malolactic Fermentation in Wine
Aline Lonvaud-Funel
15.1. Introduction
15.2. The Lactic Acid Bacteria of Wine
15.2.1. Origin
15.2.2. Species
15.2.3. Identification
15.2.4. Typing at Strain Level
15.2.5. Detection of Specific Strains
15.3. The Oenococcus Oeni Species
15.4. Evolution of Lactic Acid Bacteria during Winemaking
15.4.1. Interactions between Wine Microorganisms
15.4.2. Environmental Factors
15.5. Lactic Acid Bacteria Metabolism and its Impact on Wine Quality
15.5.1. Sugars
15.5.2. Carboxylic Acids
15.5.3. Amino Acids
15.5.4. Other Metabolisms with Sensorial Impact
15.6. Controlling the Malolactic Fermentation
15.7. Conclusions
16. The Functional Role of Lactic Acid Bacteria in Cocoa Bean Fermentation
Luc De Vuyst and Stefan Weckx
16.1. Introduction
16.2. Cocoa Crop Cultivation and Harvest
16.3. The Cocoa Pulp or Fermentation Substrate
16.4. Fresh Unfermented Cocoa Beans
16.5. Cocoa Bean Fermentation
16.5.1. Rationale
16.5.2. Farming Practices
16.6. Succession of Microorganisms during Cocoa Bean Fermentation
16.6.1. The Spontaneous Three-phase Cocoa Bean Fermentation Process
16.6.2. Yeast Fermentation
16.6.3. LAB Fermentation
16.6.4. AAB Fermentation
16.7. Biochemical Changes in the Cocoa Beans during Fermentation and Drying
16.8. Optimal Fermentation Course and End of Fermentation
16.9. Further Processing of Fermented Cocoa Beans
16.9.1. Drying of Fermented Cocoa Beans
16.9.2. Roasting of Fermented Dry Cocoa Beans
16.10. Use of Starter Cultures for Cocoa Bean Fermentation
16.10.1. Rationale
16.10.2. Experimental Use of Cocoa Bean Starter Cultures
16.11. Concluding Remarks
17. B-Group Vitamins Production by Probiotic Lactic Acid Bacteria
Jean Guy LeBlanc, Jonathan Emiliano Laiño, Marianela Juárez del Valle, Graciela Savoy de Giori, Fernando Sesma, and María Pía Taranto
17.1. Introduction
17.2. B-Group Vitamins
17.2.1. Riboflavin (Vitamin B2)
17.2.2. Folates (Vitamin B9)
17.3. Probiotics In Situ
17.3.1. Vitamin B12 (Cobalamin)
17.3.2. Cobalamin Biosynthesis by Lactobacillus reuteri
17.4. Conclusions
18. Nutraceutics and High Value Metabolites Produced by Lactic Acid Bacteria
Elvira M. Hebert, Graciela Savoy de Giori, and Fernanda Mozzi
18.1. Introduction
18.2. Nutraceutics
18.2.1. Low-calorie Sugars
18.2.2. Short-Chain Fatty Acids
18.2.3. Conjugated Linoleic Acid (CLA)
18.2.4. Bioactive Peptides
18.2.5. Gamma-aminobutyric Acid (GABA)
18.2.6. Vitamins
18.3. Exopolysaccharides
18.4. Commodity Chemicals
18.5. Conclusions
19. Production of Flavor Compounds by Lactic Acid Bacteria in Fermented Foods
Anne Thierry, Tomislav Pogačic, Magalie Weber, and Sylvie Lortal
19.1. Introduction
19.2. Flavor and Aroma Compounds
19.2.1. Volatile Compounds: Diversity Analytical Methods
19.2.2. Contribution of Volatile Aroma Compounds to Flavor
19.2.3. Origin of Aroma Compounds
19.3. LAB of Fermented Foods and their Role in Flavor Formation
19.3.1. Biochemical Processes of Flavor Compound Formation in Food and Potential of LAB
19.3.2. Flavor Compounds Produced from Carbohydrate Fermentation by LAB
19.3.3. Flavor Compounds from Amino Acid Conversion by LAB
19.3.4. Flavor Compounds from Lipids in LAB
19.3.5. Synthesis of Esters
19.3.6. Interspecies and Intraspecies Variations of Aroma Compound Production
19.4. Biotic and Abiotic Factors Modulating the Contribution of LAB to Flavor Formation
19.4.1. General Scheme of Flavor Formation in Fermented Foods In Situ
19.4.2. Factors Modulating the Expression of the Flavor-related Activities of LAB
19.4.3. Factors Determining the Real Contribution of LAB to Food Flavor
19.5. Conclusions and Research Perspectives
20. Lactic Acid Bacteria Biofilms: From their Formation to their Health and Biotechnological Potential
Jean-Christophe Piard and Romain Briandet
20.1. Lactic Acid Bacteria Biofilms are Ubiquitous in a Wide Variety of Environments from Nature to Domesticated Settings
20.2. Biofilm Life Cycle and Bacterial Factors Involved in LAB Biofilm Lifestyle
20.3. Health and Biotechnological Potential of LAB Biofilms and Underlying Mechanisms
20.4. ConclusionsPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=195809 Réservation
Réserver ce documentExemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Bibliothèque MICROBIOLOGIE-BIOTECHNOLOGIE MOZ 2.2 Papier 33004001025728 Empruntable Handbook of natural antimicrobials for food safety and quality (2015)
Titre : Handbook of natural antimicrobials for food safety and quality Type de document : texte imprimé Auteurs : T. Matthew Taylor, Editeur scientifique Editeur : Cambridge : Woodhead Publishing Année de publication : 2015 Collection : Woodhead Publishing Series in Food Science, Technology and Nutrition num. 269 Importance : 1 vol. (XXIX-412 p.) Présentation : ill., couv. ill. en coul. Format : 23 cm ISBN/ISSN/EAN : 978-0-08-101399-1 Note générale : Bibliogr. Index Langues : Anglais (eng) Catégories : Thésaurus Agro-alimentaire
JUS DE LEGUME ; MICROORGANISME ; ENCAPSULATION ; MODELE MATHEMATIQUE
Liste Plan de classement
2.5 (MICROBIOLOGIE ALIMENTAIRE) [Classement Massy]
RAMEAU
Aliments ; Aliments -- Conservation ; Antibactériens ; Antioxydants ; Bactériophages ; Bière ; Boissons ; Boissons alcoolisées ; Boissons non alcoolisées ; Chitosane ; Cidre ; Épices ; Fruits ; Huiles essentielles ; Jus de fruits ; Lactobacillacées ; Lait -- Microbiologie ; Légumes ; Plantes ; Qualité -- Contrôle ; Sécurité ; Vin ; Volaille (viande)Résumé : Natural additives are increasingly favoured over synthetic ones as methods of ensuring food safety and long shelf-life. The antimicrobial properties of both plant-based antimicrobials such as essential oils and proteins such as bacteriocins are used in, for example, edible preservative films, in food packaging and in combination with synthetic preservatives for maximum efficacy. New developments in delivery technology such as nanoencapsulation also increase the potential of natural antimicrobials for widespread use in industry. Part one introduces the different types of natural antimicrobials for food applications. Part two covers methods of application, and part three looks at determining the effectiveness of natural antimicrobials in food. Part four focuses on enhancing quality and safety, and includes chapters on specific food products. Type de document : Livre Table des matières : 1. The use of natural antimicrobials in food: an overview
1.1. Introduction
1.2. Types of natural antimicrobials: animal sources
1.3. Types of natural antimicrobials: plant sources
1.4. Types of natural antimicrobials: microbial sources
1.5. Challenges to application of natural antimicrobials to foods
1.6. Application of natural antimicrobials
1.7. Conclusions
Part One. Types
2. Plant extracts as antimicrobials in food products: types
2.1. Introduction
2.2. Herbs, spices, and plant extracts as antimicrobials
2.3. Essential oils
2.4. Plant extracts in combination with minerals
2.5. Conclusion
3. Plant extracts as antimicrobials in food products: mechanisms of action, extraction methods, and applications
3.1. Introduction
3.2. Mechanisms of action of plant extracts
3.3. Plant extracts and antibiotic resistance
3.4. Extraction methods to maximize antimicrobial properties
3.5. Response of Gram-positive and Gram-negative bacteria to plant extracts
3.6. Applications of plant extracts in food products
3.7. Conclusion
4. Bacteriophages as antimicrobials in food products: history, biology and application
4.1. Introduction
4.2. Research into bacteriophages
4.3. Biology of bacteriophages
4.4. Bacteriophages as biocontrol agents in food
4.5. The use of phage endolysins as biocontrol agents in food
4.6. Combining bacteriophages with other preservation techniques to enhance food safety
5. Bacteriophages as antimicrobials in food products: applications against particular pathogens
5.1. Introduction
5.2. Bacteriophages to control Gram-negative food-borne pathogens
5.3. Bacteriophages to control Gram-positive food-borne pathogens
5.4. Conclusion and future trends
6. Lactic acid bacteria (LAB) as antimicrobials in food products: types and mechanisms of action
6.1. Introduction
6.2. Characteristics of lactic acid bacteria (LAB)
6.3. Carbohydrate metabolism in LAB
6.4. Effects of culture preparation and storage techniques on LAB
6.5. Antimicrobial compounds produced by LAB: organic acids, diacetyl, and hydrogen peroxide
6.6. Antimicrobial compounds produced by LAB: bacteriocins
6.7. Conclusions
7. Lactic acid bacteria (LAB) as antimicrobials in food products: analytical methods and applications
7.1. Introduction
7.2. Screening lactic acid bacteria (LAB) for antimicrobial activity
7.3. Regulatory framework governing the use of LAB in food
7.4. Methods for using LAB as biopreservatives in food
7.5. Use of LAB in the biopreservation of particular food products and as a biosanitizer
7.6. Conclusions
8. Chitosan as an antimicrobial in food products
8.1. Introduction
8.2. Overview of antimicrobial activity of chitosan
8.3. Mechanism of action
8.4. Effects of molecular structure
8.5. Effects of environmental conditions
8.6. Current applications and future trends
Part Two. Processing
9. Evaluating natural antimicrobials for use in food products
9.1. Introduction
9.2. The advantages of using antimicrobials in food preservation
9.3. The use of natural antimicrobials in food preservation
9.4. Combining antimicrobials with other preservation techniques
9.5. Factors affecting the biocidal activity of natural antimicrobials
9.6. The regulation of natural antimicrobials
9.7. Conclusion
10. Physical and chemical methods for food preservation using natural antimicrobials
10.1. Introduction
10.2. Physical application of natural antimicrobials
10.3. Chemical application of natural antimicrobials
10.4. Biological application of natural antimicrobials
10.5. Commercial natural antimicrobials
10.6. Conclusion and future trends
11. Nanostructured and nanoencapsulated natural antimicrobials for use in food products
11.1. Introduction
11.2. Natural food antimicrobials
11.3. Nanostructures for antimicrobial delivery
11.4. Methods for characterization of nanostructures
11.5. Food applications of nanostructured antimicrobial systems
11.6. Conclusions and future trends
12. Modelling the effects of natural antimicrobials as food preservatives
12.1. Introduction
12.2. Antimicrobial susceptibility assessment
12.3. Mathematical modelling in food preservation
12.4. Types of models
12.5. Model development
12.6. Modelling the effects of natural antimicrobial agents
12.7. Conclusion and future trends
Part Three. Using natural antimicrobials in particularfoods
13. Using natural antimicrobials to enhance the safety and quality of fresh and processed fruits and vegetables: types of antimicrobials
13.1. Introduction
13.2. Fresh and processed fruits and vegetables: advances and challenges
13.3. Natural antimicrobials used in assuring the safety and quality of fresh and processed fruits and vegetables: antimicrobials from plant essential oils
13.4. Antimicrobials from plants: aldehydes and methyl jasmonate
13.5. Antimicrobials from plants: phenolic compounds and isothiocyanates
13.6. Chitosan is not from plant origin
13.7. Natural antimicrobials of microbial origin: lactic acid bacteria (LAB) and bacteriocins
13.8. Conclusion and future trends
14. Using natural antimicrobials to enhance the safety and quality of fresh and processed fruits and vegetables: application techniques and quality issues
14.1. Introduction
14.2. Techniques for applying natural antimicrobials to fruits and vegetables: key issues
14.3. Encapsulation of natural antimicrobials
14.4. Edible films and coatings enriched with natural antimicrobials
14.5. Antioxidant properties of natural antimicrobials
14.6. Plant antimicrobials as flavoring compounds
14.7. Conclusion and future trends
15. Using natural antimicrobials to enhance the safety and quality of milk
15.1. Introduction
15.2. Enhancing the safety and quality of milk-based beverages using natural antimicrobials: milk
15.3. Enhancing the safety and quality of infant milk formulas using natural antimicrobials
15.4. Enhancing the safety and quality of egg–milk beverages using natural antimicrobials
15.5. Conclusion and future trends
16. Using natural antimicrobials to enhance the safety and quality of fruit- and vegetable-based beverages
16.1. Introduction
16.2. Enhancing the safety and quality of fruit- and vegetable-based beverages using natural antimicrobials
16.3. Melon and watermelon juices
16.4. Orange and orange-based juices
16.5. Grape juices
16.6. Apple and pear juices
16.7. Dark fruit juices
16.8. Tomato juices
16.9. Other vegetable beverages
16.10. Conclusion and future trends
17. Using natural antimicrobials to enhance the safety and quality of alcoholic and other beverages
17.1. Introduction
17.2. Alcoholic beverages
17.3. Wine
17.4. Beer
17.5. Apple cider
17.6. Hot drinks
17.7. Conclusion and future trends
18. Using natural antimicrobials to enhance the safety and quality of poultry
18.1. Introduction
18.2. Food safety and its role in food quality
18.3. Pre-harvest use of natural antimicrobials
18.4. Antimicrobials for use on poultry products
18.5. Conclusion and future trendsPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=187024 Handbook of natural antimicrobials for food safety and quality [texte imprimé] / T. Matthew Taylor, Editeur scientifique . - Cambridge : Woodhead Publishing, 2015 . - 1 vol. (XXIX-412 p.) : ill., couv. ill. en coul. ; 23 cm. - (Woodhead Publishing Series in Food Science, Technology and Nutrition; 269) .
ISBN : 978-0-08-101399-1
Bibliogr. Index
Langues : Anglais (eng)
Catégories : Thésaurus Agro-alimentaire
JUS DE LEGUME ; MICROORGANISME ; ENCAPSULATION ; MODELE MATHEMATIQUE
Liste Plan de classement
2.5 (MICROBIOLOGIE ALIMENTAIRE) [Classement Massy]
RAMEAU
Aliments ; Aliments -- Conservation ; Antibactériens ; Antioxydants ; Bactériophages ; Bière ; Boissons ; Boissons alcoolisées ; Boissons non alcoolisées ; Chitosane ; Cidre ; Épices ; Fruits ; Huiles essentielles ; Jus de fruits ; Lactobacillacées ; Lait -- Microbiologie ; Légumes ; Plantes ; Qualité -- Contrôle ; Sécurité ; Vin ; Volaille (viande)Résumé : Natural additives are increasingly favoured over synthetic ones as methods of ensuring food safety and long shelf-life. The antimicrobial properties of both plant-based antimicrobials such as essential oils and proteins such as bacteriocins are used in, for example, edible preservative films, in food packaging and in combination with synthetic preservatives for maximum efficacy. New developments in delivery technology such as nanoencapsulation also increase the potential of natural antimicrobials for widespread use in industry. Part one introduces the different types of natural antimicrobials for food applications. Part two covers methods of application, and part three looks at determining the effectiveness of natural antimicrobials in food. Part four focuses on enhancing quality and safety, and includes chapters on specific food products. Type de document : Livre Table des matières : 1. The use of natural antimicrobials in food: an overview
1.1. Introduction
1.2. Types of natural antimicrobials: animal sources
1.3. Types of natural antimicrobials: plant sources
1.4. Types of natural antimicrobials: microbial sources
1.5. Challenges to application of natural antimicrobials to foods
1.6. Application of natural antimicrobials
1.7. Conclusions
Part One. Types
2. Plant extracts as antimicrobials in food products: types
2.1. Introduction
2.2. Herbs, spices, and plant extracts as antimicrobials
2.3. Essential oils
2.4. Plant extracts in combination with minerals
2.5. Conclusion
3. Plant extracts as antimicrobials in food products: mechanisms of action, extraction methods, and applications
3.1. Introduction
3.2. Mechanisms of action of plant extracts
3.3. Plant extracts and antibiotic resistance
3.4. Extraction methods to maximize antimicrobial properties
3.5. Response of Gram-positive and Gram-negative bacteria to plant extracts
3.6. Applications of plant extracts in food products
3.7. Conclusion
4. Bacteriophages as antimicrobials in food products: history, biology and application
4.1. Introduction
4.2. Research into bacteriophages
4.3. Biology of bacteriophages
4.4. Bacteriophages as biocontrol agents in food
4.5. The use of phage endolysins as biocontrol agents in food
4.6. Combining bacteriophages with other preservation techniques to enhance food safety
5. Bacteriophages as antimicrobials in food products: applications against particular pathogens
5.1. Introduction
5.2. Bacteriophages to control Gram-negative food-borne pathogens
5.3. Bacteriophages to control Gram-positive food-borne pathogens
5.4. Conclusion and future trends
6. Lactic acid bacteria (LAB) as antimicrobials in food products: types and mechanisms of action
6.1. Introduction
6.2. Characteristics of lactic acid bacteria (LAB)
6.3. Carbohydrate metabolism in LAB
6.4. Effects of culture preparation and storage techniques on LAB
6.5. Antimicrobial compounds produced by LAB: organic acids, diacetyl, and hydrogen peroxide
6.6. Antimicrobial compounds produced by LAB: bacteriocins
6.7. Conclusions
7. Lactic acid bacteria (LAB) as antimicrobials in food products: analytical methods and applications
7.1. Introduction
7.2. Screening lactic acid bacteria (LAB) for antimicrobial activity
7.3. Regulatory framework governing the use of LAB in food
7.4. Methods for using LAB as biopreservatives in food
7.5. Use of LAB in the biopreservation of particular food products and as a biosanitizer
7.6. Conclusions
8. Chitosan as an antimicrobial in food products
8.1. Introduction
8.2. Overview of antimicrobial activity of chitosan
8.3. Mechanism of action
8.4. Effects of molecular structure
8.5. Effects of environmental conditions
8.6. Current applications and future trends
Part Two. Processing
9. Evaluating natural antimicrobials for use in food products
9.1. Introduction
9.2. The advantages of using antimicrobials in food preservation
9.3. The use of natural antimicrobials in food preservation
9.4. Combining antimicrobials with other preservation techniques
9.5. Factors affecting the biocidal activity of natural antimicrobials
9.6. The regulation of natural antimicrobials
9.7. Conclusion
10. Physical and chemical methods for food preservation using natural antimicrobials
10.1. Introduction
10.2. Physical application of natural antimicrobials
10.3. Chemical application of natural antimicrobials
10.4. Biological application of natural antimicrobials
10.5. Commercial natural antimicrobials
10.6. Conclusion and future trends
11. Nanostructured and nanoencapsulated natural antimicrobials for use in food products
11.1. Introduction
11.2. Natural food antimicrobials
11.3. Nanostructures for antimicrobial delivery
11.4. Methods for characterization of nanostructures
11.5. Food applications of nanostructured antimicrobial systems
11.6. Conclusions and future trends
12. Modelling the effects of natural antimicrobials as food preservatives
12.1. Introduction
12.2. Antimicrobial susceptibility assessment
12.3. Mathematical modelling in food preservation
12.4. Types of models
12.5. Model development
12.6. Modelling the effects of natural antimicrobial agents
12.7. Conclusion and future trends
Part Three. Using natural antimicrobials in particularfoods
13. Using natural antimicrobials to enhance the safety and quality of fresh and processed fruits and vegetables: types of antimicrobials
13.1. Introduction
13.2. Fresh and processed fruits and vegetables: advances and challenges
13.3. Natural antimicrobials used in assuring the safety and quality of fresh and processed fruits and vegetables: antimicrobials from plant essential oils
13.4. Antimicrobials from plants: aldehydes and methyl jasmonate
13.5. Antimicrobials from plants: phenolic compounds and isothiocyanates
13.6. Chitosan is not from plant origin
13.7. Natural antimicrobials of microbial origin: lactic acid bacteria (LAB) and bacteriocins
13.8. Conclusion and future trends
14. Using natural antimicrobials to enhance the safety and quality of fresh and processed fruits and vegetables: application techniques and quality issues
14.1. Introduction
14.2. Techniques for applying natural antimicrobials to fruits and vegetables: key issues
14.3. Encapsulation of natural antimicrobials
14.4. Edible films and coatings enriched with natural antimicrobials
14.5. Antioxidant properties of natural antimicrobials
14.6. Plant antimicrobials as flavoring compounds
14.7. Conclusion and future trends
15. Using natural antimicrobials to enhance the safety and quality of milk
15.1. Introduction
15.2. Enhancing the safety and quality of milk-based beverages using natural antimicrobials: milk
15.3. Enhancing the safety and quality of infant milk formulas using natural antimicrobials
15.4. Enhancing the safety and quality of egg–milk beverages using natural antimicrobials
15.5. Conclusion and future trends
16. Using natural antimicrobials to enhance the safety and quality of fruit- and vegetable-based beverages
16.1. Introduction
16.2. Enhancing the safety and quality of fruit- and vegetable-based beverages using natural antimicrobials
16.3. Melon and watermelon juices
16.4. Orange and orange-based juices
16.5. Grape juices
16.6. Apple and pear juices
16.7. Dark fruit juices
16.8. Tomato juices
16.9. Other vegetable beverages
16.10. Conclusion and future trends
17. Using natural antimicrobials to enhance the safety and quality of alcoholic and other beverages
17.1. Introduction
17.2. Alcoholic beverages
17.3. Wine
17.4. Beer
17.5. Apple cider
17.6. Hot drinks
17.7. Conclusion and future trends
18. Using natural antimicrobials to enhance the safety and quality of poultry
18.1. Introduction
18.2. Food safety and its role in food quality
18.3. Pre-harvest use of natural antimicrobials
18.4. Antimicrobials for use on poultry products
18.5. Conclusion and future trendsPermalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=187024 Réservation
Réserver ce documentExemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Massy Bibliothèque MICROBIOLOGIE-BIOTECHNOLOGIE TAY 2.5 Papier 33004000618689 Empruntable Risques microbiologiques alimentaires (2017)
Titre : Risques microbiologiques alimentaires Type de document : texte imprimé Auteurs : Murielle Naïtali, Coordinateur ; Laurent Guillier, Coordinateur ; Florence Dubois-Brissonnet, Coordinateur Editeur : Paris : Lavoisier-Tec & Doc Année de publication : 2017 Collection : Sciences et techniques agroalimentaires Importance : 1 vol. (XLII-795 p.) Présentation : ill., couv. ill. en coul. Format : 24 cm ISBN/ISSN/EAN : 978-2-7430-2106-1 Prix : 129 EUR Note générale : Bibliogr. Index Langues : Français (fre) Catégories : Thésaurus Agro-alimentaire
MICROORGANISME ; LISTERIA ; SALMONELLA ; HACCP
Liste Plan de classement
2.5 (MICROBIOLOGIE ALIMENTAIRE) [Classement Massy]
RAMEAU
Aliments ; Aliments -- Aspect sanitaire ; Aliments -- Contamination ; Aliments -- Irradiation ; Aliments -- Microbiologie ; Aliments -- Microbiologie -- Qualité -- Contrôle ; Analyse des dangers et maîtrise des points critiques ; Bacillus cereus ; Bactéries pathogènes ; Bactériophages ; Biofilms ; Campylobacter jejuni ; Clostridium ; Cyanobactéries ; Désinfectants ; Désinfection ; Escherichia coli ; Industrie agro-alimentaire -- Qualité -- Contrôle ; Infections à prions ; Infections à Yersinia enterocolitica ; Listeria monocytogènes ; Microalgues ; Mycotoxines ; Pasteurisation ; Qualité -- Contrôle ; Rayonnement ultraviolet ; Risques pour la santé ; Salmonella ; Santé publique -- Droit international ; Aliments -- Approvisionnement ; Staphylococcus aureus ; Stérilisation ; Traitement thermique ; VirusRésumé : Pour garantir et maîtriser la sécurité microbiologique des aliments et prévenir les crises sanitaires alimentaires, la connaissance et la surveillance des microorganismes pathogènes depuis la production primaire jusqu’à la distribution des denrées alimentaires en passant par la transformation, sont indispensables. Cet ouvrage traite des dangers microbiologiques alimentaires majeurs (microorganismes infectieux ou toxines d’origine microbienne) et des risques associés pour l’Homme. Illustré de nombreux schémas et tableaux de synthèse, il fait un point complet sur les notions fondamentales de microbiologie générale, de physiologie microbienne et de modélisation, en les appliquant aux microorganismes pathogènes des aliments et en y intégrant les dernières avancées. Il présente ensuite les outils de gestion du risque microbiologique mis en place au niveau européen et français. Type de document : Livre Table des matières : CHAPITRE 1 Dangers microbiologiques alimentaires : habitats, modes de transmission à l’Homme et expression du pouvoir pathogène (Florence Dubois-Brissonnet, Shaynoor Dramsi, Laurent Guillier )
CHAPITRE 2 Développement des microorganismes pathogènes dans les aliments (Murielle Naïtali, Florence Dubois-Brissonnet)
CHAPITRE 3 Inactivation des microorganismes pathogènes dans les aliments et les environnements industriels agroalimentaires (Murielle Naïtali, Florence Dubois-Brissonnet)
CHAPITRE 4 Prévoir le comportement des bactéries pathogènes dans les aliments (Laurent Guillier, Eugénie Baril, Jean-Christophe Augustin)
CHAPITRE 5 Adaptation au stress, tolérance et persistance des bactéries pathogènes dans les environnements alimentaires (Florence Dubois-Brissonnet, Murielle Naïtali, Romain Briandet )
CHAPITRE 6 Évolution des risques microbiologiques (Florence Dubois-Brissonnet)
CHAPITRE 7 Bioterrorisme et risque alimentaire (Didier Hilaire, Valérie Morineaux)
Outils de gestion du risque microbiologique alimentaire
CHAPITRE 8 Réglementations régissant la sécurité sanitaire des aliments (Laurent Guillier)
CHAPITRE 9 PMS et HACCP (Olivier Boutou)
CHAPITRE 10 HACCP en pratique : aspects managériaux et études de cas (Maryvonne Lassalle-de Salins, Elisabeth Morelli, Véronique Noël, Gérard Poumeyrol,Florence Dubois-Brissonnet)
CHAPITRE 11 Dispositif de surveillance des microorganismes dans la chaîne alimentaire : finalités et organisation en France (Bertrand Lombard, Corinne Danan,Marion Bordier, Laurent Montaut, Isabelle Berta- Van Rullen, Renaud Lailler, Laurent Laloux)
CHAPITRE 12 Méthodes d’analyse pour le contrôle microbiologique des aliments : cas des bactéries pathogènes (Murielle Naïtali, Abdelkader Boubetra)
CHAPITRE 13 Systèmes français de surveillance des maladies d’origine alimentaire : sources, méthodes,
apports, limites (Véronique Vaillant, Christine Saura, Henriette de Valk)
CHAPITRE 14 Analyse des risques microbiologiques (Laurent Guillier)
CHAPITRE 15 Gestion d’une crise sanitaire : récit d’un épisode relatif à E. coli O157:H7 fin 2005 (Maryvonne Lassalle-de Salins, Karine Boquet)
Agents infectieux et/ou toxinogènes avérés, émergents et réémergents
CHAPITRE 16 Salmonella enterica (Zineb Boumart, Fatémeh Namdari, Isabelle Virlogeux-Payant, Philippe Velge)
CHAPITRE 17 Escherichia coli producteurs de Shiga-toxines (STEC) (Estelle Loukiadis)
CHAPITRE 18 Campylobacter jejuni et autres Campylobacter thermotolérants responsables d’intoxications alimentaires (Soumaya Messaoudi, Michel Federighi)
CHAPITRE 19 Listeria monocytogenes (Pascal Piveteau)
CHAPITRE 20 Yersinia enterocolitica et Yersinia pseudotuberculosis (Carole Feurer, Laurent Guillier)
CHAPITRE 21 Cronobacter spp. (Enterobacter sakazakii sensu lato) (Alexandre Leclercq)
CHAPITRE 23 Bacillus cereus (Christophe Nguyen-The, Frédéric Carlin)
CHAPITRE 24 Clostridium perfringens (Michel Robert Popoff)
CHAPITRE 25 Clostridium botulinum et autres Clostridium producteurs de neurotoxines botuliques (Michel Robert Popoff)
CHAPITRE 26 Staphylococcus aureus et autres staphylocoques producteurs d’entérotoxines (Jacques-Antoine Hennekinne, Florence Guillier, Sabine Herbin, Frédéric Auvray)
CHAPITRE 27 Histamine et bactéries histaminogènes (Guillaume Duflos, Gaëlle Inglebert)
CHAPITRE 28 Virus pathogènes alimentaires (Christophe Gantzer)
CHAPITRE 29 Parasites alimentaires (Isabelle Villena)
CHAPITRE 30 Prion : un agent infectieux de nature protéique (Angélique Igel-Egalon, Vincent Béringue, Thomas Maignien)
CHAPITRE 31 Mycotoxines et moisissures toxinogènes (Florence Forget-Richard, Isabelle Oswald)
CHAPITRE 32 Toxines produites par les microalgues et cyanobactéries (Muriel Gugger, Aurélie Ledreux)Permalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=189337 Risques microbiologiques alimentaires [texte imprimé] / Murielle Naïtali, Coordinateur ; Laurent Guillier, Coordinateur ; Florence Dubois-Brissonnet, Coordinateur . - Paris : Lavoisier-Tec & Doc, 2017 . - 1 vol. (XLII-795 p.) : ill., couv. ill. en coul. ; 24 cm. - (Sciences et techniques agroalimentaires) .
ISBN : 978-2-7430-2106-1 : 129 EUR
Bibliogr. Index
Langues : Français (fre)
Catégories : Thésaurus Agro-alimentaire
MICROORGANISME ; LISTERIA ; SALMONELLA ; HACCP
Liste Plan de classement
2.5 (MICROBIOLOGIE ALIMENTAIRE) [Classement Massy]
RAMEAU
Aliments ; Aliments -- Aspect sanitaire ; Aliments -- Contamination ; Aliments -- Irradiation ; Aliments -- Microbiologie ; Aliments -- Microbiologie -- Qualité -- Contrôle ; Analyse des dangers et maîtrise des points critiques ; Bacillus cereus ; Bactéries pathogènes ; Bactériophages ; Biofilms ; Campylobacter jejuni ; Clostridium ; Cyanobactéries ; Désinfectants ; Désinfection ; Escherichia coli ; Industrie agro-alimentaire -- Qualité -- Contrôle ; Infections à prions ; Infections à Yersinia enterocolitica ; Listeria monocytogènes ; Microalgues ; Mycotoxines ; Pasteurisation ; Qualité -- Contrôle ; Rayonnement ultraviolet ; Risques pour la santé ; Salmonella ; Santé publique -- Droit international ; Aliments -- Approvisionnement ; Staphylococcus aureus ; Stérilisation ; Traitement thermique ; VirusRésumé : Pour garantir et maîtriser la sécurité microbiologique des aliments et prévenir les crises sanitaires alimentaires, la connaissance et la surveillance des microorganismes pathogènes depuis la production primaire jusqu’à la distribution des denrées alimentaires en passant par la transformation, sont indispensables. Cet ouvrage traite des dangers microbiologiques alimentaires majeurs (microorganismes infectieux ou toxines d’origine microbienne) et des risques associés pour l’Homme. Illustré de nombreux schémas et tableaux de synthèse, il fait un point complet sur les notions fondamentales de microbiologie générale, de physiologie microbienne et de modélisation, en les appliquant aux microorganismes pathogènes des aliments et en y intégrant les dernières avancées. Il présente ensuite les outils de gestion du risque microbiologique mis en place au niveau européen et français. Type de document : Livre Table des matières : CHAPITRE 1 Dangers microbiologiques alimentaires : habitats, modes de transmission à l’Homme et expression du pouvoir pathogène (Florence Dubois-Brissonnet, Shaynoor Dramsi, Laurent Guillier )
CHAPITRE 2 Développement des microorganismes pathogènes dans les aliments (Murielle Naïtali, Florence Dubois-Brissonnet)
CHAPITRE 3 Inactivation des microorganismes pathogènes dans les aliments et les environnements industriels agroalimentaires (Murielle Naïtali, Florence Dubois-Brissonnet)
CHAPITRE 4 Prévoir le comportement des bactéries pathogènes dans les aliments (Laurent Guillier, Eugénie Baril, Jean-Christophe Augustin)
CHAPITRE 5 Adaptation au stress, tolérance et persistance des bactéries pathogènes dans les environnements alimentaires (Florence Dubois-Brissonnet, Murielle Naïtali, Romain Briandet )
CHAPITRE 6 Évolution des risques microbiologiques (Florence Dubois-Brissonnet)
CHAPITRE 7 Bioterrorisme et risque alimentaire (Didier Hilaire, Valérie Morineaux)
Outils de gestion du risque microbiologique alimentaire
CHAPITRE 8 Réglementations régissant la sécurité sanitaire des aliments (Laurent Guillier)
CHAPITRE 9 PMS et HACCP (Olivier Boutou)
CHAPITRE 10 HACCP en pratique : aspects managériaux et études de cas (Maryvonne Lassalle-de Salins, Elisabeth Morelli, Véronique Noël, Gérard Poumeyrol,Florence Dubois-Brissonnet)
CHAPITRE 11 Dispositif de surveillance des microorganismes dans la chaîne alimentaire : finalités et organisation en France (Bertrand Lombard, Corinne Danan,Marion Bordier, Laurent Montaut, Isabelle Berta- Van Rullen, Renaud Lailler, Laurent Laloux)
CHAPITRE 12 Méthodes d’analyse pour le contrôle microbiologique des aliments : cas des bactéries pathogènes (Murielle Naïtali, Abdelkader Boubetra)
CHAPITRE 13 Systèmes français de surveillance des maladies d’origine alimentaire : sources, méthodes,
apports, limites (Véronique Vaillant, Christine Saura, Henriette de Valk)
CHAPITRE 14 Analyse des risques microbiologiques (Laurent Guillier)
CHAPITRE 15 Gestion d’une crise sanitaire : récit d’un épisode relatif à E. coli O157:H7 fin 2005 (Maryvonne Lassalle-de Salins, Karine Boquet)
Agents infectieux et/ou toxinogènes avérés, émergents et réémergents
CHAPITRE 16 Salmonella enterica (Zineb Boumart, Fatémeh Namdari, Isabelle Virlogeux-Payant, Philippe Velge)
CHAPITRE 17 Escherichia coli producteurs de Shiga-toxines (STEC) (Estelle Loukiadis)
CHAPITRE 18 Campylobacter jejuni et autres Campylobacter thermotolérants responsables d’intoxications alimentaires (Soumaya Messaoudi, Michel Federighi)
CHAPITRE 19 Listeria monocytogenes (Pascal Piveteau)
CHAPITRE 20 Yersinia enterocolitica et Yersinia pseudotuberculosis (Carole Feurer, Laurent Guillier)
CHAPITRE 21 Cronobacter spp. (Enterobacter sakazakii sensu lato) (Alexandre Leclercq)
CHAPITRE 23 Bacillus cereus (Christophe Nguyen-The, Frédéric Carlin)
CHAPITRE 24 Clostridium perfringens (Michel Robert Popoff)
CHAPITRE 25 Clostridium botulinum et autres Clostridium producteurs de neurotoxines botuliques (Michel Robert Popoff)
CHAPITRE 26 Staphylococcus aureus et autres staphylocoques producteurs d’entérotoxines (Jacques-Antoine Hennekinne, Florence Guillier, Sabine Herbin, Frédéric Auvray)
CHAPITRE 27 Histamine et bactéries histaminogènes (Guillaume Duflos, Gaëlle Inglebert)
CHAPITRE 28 Virus pathogènes alimentaires (Christophe Gantzer)
CHAPITRE 29 Parasites alimentaires (Isabelle Villena)
CHAPITRE 30 Prion : un agent infectieux de nature protéique (Angélique Igel-Egalon, Vincent Béringue, Thomas Maignien)
CHAPITRE 31 Mycotoxines et moisissures toxinogènes (Florence Forget-Richard, Isabelle Oswald)
CHAPITRE 32 Toxines produites par les microalgues et cyanobactéries (Muriel Gugger, Aurélie Ledreux)Permalien de la notice : https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=189337 Réservation
Réserver ce documentExemplaires
Localisation Emplacement Section Cote Support Code-barres Disponibilité Grignon Bibliothèque MICROBIOLOGIE (Rouge) G2017/10 Papier 33004001370124 Empruntable Grignon Bibliothèque MICROBIOLOGIE (Rouge) G2018/32 Papier 33004000937121 Empruntable Massy Bibliothèque MICROBIOLOGIE-BIOTECHNOLOGIE NAI 2.5 Papier 33004000619323 Empruntable Massy Bibliothèque MICROBIOLOGIE-BIOTECHNOLOGIE NAI 2.5 Papier 33004000619331 Empruntable Massy Bibliothèque MICROBIOLOGIE-BIOTECHNOLOGIE NAI 2.5 Papier 33004000619166 Empruntable sous conditions Massy Bibliothèque MICROBIOLOGIE-BIOTECHNOLOGIE NAI 2.5 Papier 33004000619158 Empruntable Paris Maine Bibliothèque Agriculture, Économie agricole et alimentaire 538.1 NAI Papier 33004000650682 Empruntable