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Brief presentation of the host institution 

EFICENT-OEF is a Regional Office of the European Forest Institute (EFI), an international 
organization established in 1993. The office was founded in Freiburg (Germany) in 2009, and it 
has two different geographical scopes. It focuses its research activities on the different forestry 
sectors in Central European countries, but is also open to cooperation with other countries 
outside this area. 

An integral component of EFICENT is the Observatory of European Forests (OEF), which is 
located in Nancy (France). OEF, in contrast to other Regional Offices, has a pan-European 
perspective and supports EFI by establishing a policy-oriented forest information platform, both 
at the national and the international levels. OEF aims to promote research collaboration between 
institutions, and to foster the linkages between information and policy decision-making 
processes. The institution also caters for courses/workshops for researchers and information 
experts to stimulate expertise exchange on current and emerging topics. All these goals are 
pursued through three different research programs: 

• Microeconomics: Forest investment analysis 
• Macroeconomics: Forest sector modeling, including Criteria & Indicators for Sustainable 

Forest Management (SFM) 
• Observatory: Communication and participatory research with civil society 

While mostly focused on forest economics, all programs also take into consideration the social 
and ecological aspects of SFM. 

In order to successfully operate at the pan-European level, OEF maintains a close interaction 
with various stakeholders from European and international organizations (e.g. FAO, UNECE, 
FOREST EUROPE and the European Commission), being involved in ongoing policy processes 
in forestry and adjacent environmental and socio-economic sectors. OEF also cooperates with 
several Universities and research institutions in Europe, and its core funding is provided by four 
different donors: the French Ministry of Agriculture and Fisheries, the Regional Council of 
Lorraine, the Urban Community of Greater Nancy, and the Institut National de la Recherche 
Agronomique (INRA). 

SWOT analysis 

One of the main strengths of my hosting institution is its broad presence all over Europe, and 
specifically for OEF, is its very close cooperation with local institutions (e.g. INRA, 
AgroParisTech University). This improves the efficiency of the institution when making use of 
its budget. One of the biggest opportunities nowadays is the establishment of new offices in non-
European countries (i.e. Brazil, China and USA), and the possibility to start new collaboration 
projects. On the other hand, one of the major weaknesses is the inability to work in longer term 
funded research projects, since forestry projects can usually take up to 30 years. Finally, one of 
main threats is the economical crisis that is affecting the entire Euro zone, compromising long-
term research projects and their funding. 
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Abstract 

The concept of sustainability has evolved from a narrow focus on sustainable wood production 
to a much broader definition that includes many multi-dimensional aspects, such as 
environmental, social and economic values. The development of criteria and indicators together 
with new sustainability impact assessment tools has been an active process during the last 
decades. ToSIA is an entirely data-driven tool that evaluates these impacts based on indicators, 
processes and material flows of value chains. Some of these indicators can be estimated with 
Airborne Laser Scanning (ALS) systems, which are rapidly spreading as a predominant 
technique for forest resource assessments. A three-staged procedure in which sample plots were 
used to develop empirical relationships between various metrics computed from laser data, and 
tree characteristics measured in the field has been applied. Different linear models have been 
selected to predict several forest variables in different forest stands within a study area. Four 
different attributes (Total volumes of log and pulp, Gini coefficient, & Probability of existence of 
Coarse Woody debris) were finally selected in a classification process into three different 
categories: forest areas for timber extraction, forest areas with a relatively high biodiversity 
value, and forest areas with a high biodiversity value but also potentially attractive for their 
recreational use. Gini coefficient was the main clustering criterion between the classes that 
accurately represented the different processes originally included in the ToSIA value chain, 
finally linking both applications. 

 

Context and state of the art 

Sustainability has been recognized as a target of good management in forestry for centuries 
(Carlowitz 1713). However, the concept of sustainable forest management has evolved from a 
narrow focus on sustainable wood production to a much broader definition that includes many 
multi-dimensional aspects: environmental, social and economic (MCPFE 2002, Lindner et al. 
2010, Rosén et al. 2012). The development of consistent criteria and indicators for sustainable 
forest management has been an active process during the last decades. This development has also 
been linked with the creation of different sustainability impact assessment methods, such as 
ToSIA software (Tscherning et al. 2008). ToSIA compares quantified impacts on sustainability 
of Forest Wood Chains (FWC) between a baseline and one or more scenarios. FWCs are defined 
as chains of production processes (e.g. harvesting-transport-industrial processing), which are 
linked with products (e.g. volume of saw logs). Sustainability is determined by analyzing the 
different indicators for all the production processes along the same FWC. Then, sustainability 
values are calculated as products of the relative indicator values (i.e. indicator value expressed 
per unit of material flow) multiplied by the material flow entering each process (Palosuo 2010). 
Calculated sustainability values are then aggregated for the complete FWC, or just only for 
segments of the same (Lindner et al. 2010). ToSIA is a flexible and entirely data-driven tool, 
with the possibility to include additional indicators (Lindner 2011). New indicators need to be 
defined following a certain format, as stated in a “Data Collection Protocol” (Berg, 2008) that 
can be developed in collaboration with a wide range of information sources (Lindner et al. 2010). 

Airborne Laser Scanning (ALS) sensors are rapidly spreading as a predominant remote sensing 
technique for forest resource assessment. Relationships between different metrics that may be 
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derived from ALS data and tree and canopy characteristics have been widely studied (Hudak et 
al. 2009, Næsset 2004). Næsset (2002) proposed a practical two-stage procedure in which sample 
plots were used to provide individual stand estimates of tree variables from laser scanner data. 
Georeferenced sample plots could, in the first stage, be used to develop empirical relationships 
between various metrics derived from laser data and tree characteristics measured in the field. 
Such relationships can be later used to provide the corresponding estimates for each one of the 
forest stands covered by the laser data; therefore, carrying out forest inventories at larger scales 
(Næsset, Bjerknes 2011). Furthermore, ALS sensors also present certain limitations when 
applied in the assessment of forest resources (e.g. species differentiation). However, different 
authors have demonstrated that by combining ALS data with other sources of remote sensing and 
geographical information is possible to overcome some of them (Andersen et al. 2011, 
McInerney et al. 2010, Packalen et al. 2009, Valbuena et al. 2013). For this reason, there is a 
good potential for developing harmonized protocols by means of ALS in the estimation of a 
good number of sustainability indicators, especially those related with the environmental 
conditions (Wulder et al. 2008). 

The main objective of this study was the implementation of ALS sensors in the definition of new 
protocols required in the estimation of several environmental sustainability indicators, all of 
them included in the “Data Collection Protocol” of ToSIA tool. All indicator values will be 
finally used in the delineation of different management units, which will be later used as input 
data for ToSIA.  

 

Materials and methods 

Materials 

Study area 

An area of approximately 800ha in the municipality of Kiihtelysvaara (62°31'N 30°10'E) in the 
province of North Karelia (Finland) was selected. Only the forest and other wooded land was 
analyzed, following the definition of The Food and Agriculture Organization (FAO 2011). 
However, the study area was also partly covered by other land uses such as open grasslands and 
water bodies. Commercial active management is mainly pursued in the area since around 70% 
belongs to UPM-kymmene (Finland), one of the biggest forest companies in the world 
(Appendix I). The rest of the forest area belongs to small private forest owners. The main tree 
species were Norway spruce (Picea abies (L. Karst.)) and Scots pine (Pinus sylvestris (L.)), with 
a minor proportion of broadleaved species (mainly Betula ssp.). 

Sample plot inventory 

The ground-truth dataset acquired in this study consisted on 79 sample plots, stratified within the 
different forest stand types within the study area, and plot positions were subjectively determined 
to assure full range coverage for all the forest variables considered. 67 of the sample plots were 
located into forest land owned by UPM (U), and the remaining 12 in areas owned by small 
private owners (P) (Appendix I). Plots areas were between 400-900m2, depending on the density 
of trees in each one of them. Plot size was therefore limited by assuring the time required for plot 
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mensuration to extend no longer than one working day. All seedling and sapling stands were 
ignored in the distribution. 

Field measurements were carried out between May and June 2010, and in each one of the sample 
plots all trees with a diameter at breast height over 5cm, or a height over 4m were callipered, 
measured and mapped. The taxonomical species of each one of the selected individuals was then 
identified and recorded with a numerical code, where 1=Pinus sylvestris; 2=Picea abies; and 
3=Deciduous ssp. (mainly Betula pendula). For every tree i within plot, diameter at breast height 
(dbhi; cm) was calculated as the average of two different perpendicular diameter measures, and 
tree top height (hi; m) was measured with a Vertex hypsometer. Basal area-weighted proportions 
of each species were computed, and dominant species were defined as those whose presence was 
higher than 60%. Within the sample plot inventory, the diameter at 6 m height was also 
measured in order to obtain more accurate estimates for Total volume (Tvol), Volume of logs 
(Tvol_log), and Volume of pulp (Tvol_pulp) for each individual tree (Laasasenaho 1982). For 
pine and spruce, the minimum diameter and length for the logs were established in 16cm and 4m 
respectively, whereas for deciduous trees, these values were 18cm and 3.1m. For all species, the 
maximum length of the logs was 6.1m, which corresponds to the maximum size that sawmills 
can process in Finland. 

Airborne Laser Scanning data 

Laser data was acquired by an aircraft carrying an ALTM Gemini 125kHz multi-pulse mode 
laser scanning system produced by Optech, Canada. The data was acquired on the 26 June 2009, 
and the plane was flown approximately 720m above the ground. The scanning angle was 26º 
with an approximate overlap of 55%, so that every location in the study area was covered by at 
least two flight lines. The swath width was approximately 320 m, and the laser pulse density was 
estimated at 11.9 measurements/m2. This configuration was used to maximize the probability for 
trees to receive ALS hits in both sides, reducing the occurrence of shadow areas in which tree 
foliage obstructs the path of the laser from reaching behind them. 

                                                                                                                                                                                                                                                     
ToSIA - Forest Wood Chain (FWC) 
ALS systems are potentially able to provide a wide range of indicators related with the 
assessment of forest resources. That is the reason why the FWC in this study was almost entirely 
built with processes that belong to the “Forest resources management” module of the program 
(Lindner et al. 2010) (Figure 2). 

The first process (ALS Scanning of the study area) is related with the entire study area and the 
ALS point cloud that covers it. This process has two different output products; each one was 
measured in area units depending on a differentiation made between Forest and Other Wooded 
Land area and the rest of land uses (Food and Agriculture Organization-FAO 2011). Since the 
main objective of this study was the analysis of forest ecosystems, the value chain was only 
developed for the product 10003000. The first of the created branches corresponded to all those 
areas with a present economic interest in this hypothetical study. Products 10003009, 10002996 
& 10002989 were measured in terms of volume of wood resources (m3/ha), including 
information like Tvol; Tvol_log & Tvol_pulp as indicators of each production process (Table 2). 
The second half of the FWC enclosed all areas with a natural value relatively higher, and/or with 
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a certain social value. All products within this part of the value chain are area-related. The 
distinction between the areas within different processes was made according to the values for the 
predicted variables in this study (Appendix IV), and the aggregation into these products is 
specific for this case study. Products of the same ID, regardless if input or output, always have 
the same characteristics. 

 

Figure 2. Forest Wood Chain created in ToSIA. Rectangles correspond to processes and their respective inputs and 
outputs are represented by numerical codes; arrows indicate the connexions between the different processes. 

 

General methodology  

The main methodology applied in this study is based on the practical two-stage procedure 
suggested by Næsset (2002), but with the inclusion of an additional third step (Figure 3). 

Step I. Laser data processing 

A Digital Terrain Model (DTM) was firstly interpolated using a Delaunay triangulation 
(Axelsson 2000), and all point elevations from the ALS data were scaled to above ground 
heights. Then, a large number of descriptive statistics was derived both at the plot and study area 
levels, being the same in both cases. For instance: (1) quantiles corresponding to 0, 10,..., 90 
percentiles of the distribution; (2) maximum and minimum; (3) mean and mode; (4) standard 
deviation and coefficient of variation; etc. Metrics derived for the entire study area were stored in 
different grid (raster) files, and were later used in the implementation of the linear models. Grid 
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cell size was established in 20m (400m2), assuring a scale comparable to the size of the majority 
of the field sample plots. This first step was carried out using Fusion (McGaughey 2012). 

Step II. Regression analysis 

Suitable relationships were established between the different ALS descriptive statistics derived at 
the plot level and all the measurements obtained during the field inventory. The former acted as 
predictors (X), whereas the later were used as dependent variables (Y). 

 

 

Figure 3. Flowchart of the procedure followed to obtain the polygon shape files used to calculate the different 
indicator values for the ToSIA FWC. Rectangles represent datasets and their subsets; processing steps are 

represented by rhombi; and the bold names between brackets correspond to the different FUSION commands used 
in each processing step. 

Some of the dependent variables were directly measured in each sample plot, and then expanded 
to the hectare level: 1) Total Volume/ha (m3/ha) (Tvol); 2) Total Volume of logs/ha (m3/ha) 
(Tvol_log); and 3) Total Volume of pulp/ha (m3/ha) (Tvol_pulp). On the other hand, some other 
parameters were derived from the previous ones: 

• Gini coefficient (GC): measure of tree size inequality (Gini 1912, Weiner and Solbrig 
1984). It quantifies the deviation from perfect equality, with a minimum value of zero 
when all trees are of equal size (volume in this study), increasing for more uneven-sized 
stands up to a maximum value of 1 (equation 1). Lexerød and Eid (2006) and Valbuena et 
al. (2012) demonstrated that GC is superior to all other indices when evaluating tree size 
equitability of forest stands. This coefficient presents the highest discriminator ability, 
capability of providing logical ranking of different distributions, and sensitivity to 
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variation in sample size. In this study, it has been used as a measure of the structural 
complexity between the different forest stands. 

                               (1) 
 

Where, 
   Tvol – Total volume for each i and j tree, in m3 
   n – Total number of trees inside each plot 

 
 

• Total aboveground biomass (TAB) & Total belowground biomass (TBG): different 
species-specific allometric equations were selected from the review made by Zianis et al. 
(2005). All selected equations have already been statistically tested in Finnish forest 
ecosystems (equations 2-7).  

 
ABP.sylvestris = 18.779 – 4.328*dbhi + 0.506*dbhi

2          (2) 

ABP.abies = 19.018 - 4.806*dbhi + 0.565*dbhi
2    (3) 

ABB.pendula = 0.00087*dbhi
2.28639      (4) 

Log(BGP.sylvestris) = -1.89 + 2.74*log(dbhi)    (5) 

Log(BGP. abies) = -2.0274 + log[hi*( dbhi
2)] * 0.8946    (6) 

BGB.pendula = -3.887 + 1.3668*log(dbhi
2*hi)     (7) 

 

Where, 

    AB - total aboveground biomass of an individual tree, in kg 
    BG - total belowground biomass of an individual tree, in kg 
    dbhi - diameter of the tree i, in cm 
    hi – height of the tree i, in m 
 
With these equations we calculated the above and belowground biomass for each single tree, so 
these values were later expanded at the hectare level, resulting in the indicators TAB and TBG, 
respectively. 
 
In the end, eight different indicators were obtained in each sample plot: (1) Ownership type; (2) 
Dominant species; (3) Total volume/ha (m3/ha); (4) Total volume of logs/ha (m3/ha); (5) Total 
volume of pulp/ha (m3/ha); (6) Gini coefficient (0-1); (7) Total aboveground biomass/ha (kg/ha); 
and (8) Total belowground biomass (kg/ha) (Table 1). Second indicator in the table (Dominant 
species) was calculated following an alternative methodology, based on the utilization of 
airborne multispectral imagery (see Particular cases - Proportions of species mixture). 

Once both the predictors (X) and the indicators (Y) were gathered, the most suitable regression 
models for the prediction of plot dependent variables 3 to 8 were fitted. Model selection was 
based on the application of the Akaike Information Criteria (AIC) method (Akaike 1973). We 
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performed a forward stepwise selection procedure of the predictor variables, iteratively finding 
the combination with the lowest AIC value. Models´ performance was assessed by leave-one-out 
cross-validation, from which relative the Root Mean Squared Errors (RMSE%) were evaluated 
from the prediction. Logarithmic transformations were applied in both sides of the equalities 
whenever heterocedasticity processes were detected (Table 2). The last two models in this table 
were not obtained following the above-mentioned procedure (see Particular cases - Probability of 
existence of standing/lying coarse woody debris). All procedures were carried out using R 
version 2.15.2 (The R Foundation for Statistical Computing 2012)  

Step III. Implementation of the models & ToSIA input 

Once all models were optimally adjusted they were extrapolated into the whole study area, and 
implemented for each one of the grid cells in which this was divided. The output of this process 
was imported into ArcMap10 (ESRI 2010) as five different raster (ascii) layers, one for each 
dependent variable. These raster layers were then masked according to the definition made by 
Food and Agriculture Organization-FAO (2011) for Forest and Other Wooded Land area, 
leaving out all other land uses (see Particular cases – Delineation of Forest and Other Wooded 
Land area). 

Six out of the eight predicted variables or indicators were implemented into the FWC previously 
designed: Total Volume/ha (m3/ha), Total Volume of logs/ha (m3/ha), Total Volume of pulp/ha 
(m3/ha), Gini coefficient (0-1), Probability of existence of downed coarse woody debris (1-7) and 
Probability of existence of standing coarse woody debris (1-7) (Table 2). The selection was made 
taking into account the created chain in itself, where a first differentiation was made between the 
economically interesting forest areas, and those with a higher natural relative and/or social value 
(Figure 2). The differentiation between the two branches of the FWC was based on a 
thresholding process of the predicted values for the selected indicators. An isocluster algorithm 
was applied, and the dataset was apportioned into homogeneous clusters according to the 
statistical distribution of the mentioned variables. After range-normalizing the variables (0-100), 
eight clusters were generated. The resulting class signatures were used as the input for an 
unsupervised classification method based on a Maximum Likelihood algorithm (Appendix III). 
The result of the classification process was then filtered with a Majority algorithm in order to 
render homogeneous class delineation by removing the high number of isolated pixels that 
appeared within the different classified areas. The eight different classes were then grouped into 
two new ones, which corresponded to the two different branches characterizing the FWC 
(Appendix IV). The discrimination between the two main groups presumed within the FWC was 
based on the value of the GC, Tvol & Tpulp. The group with an economical interest was then 
further developed by deriving from Tvol the commercial volume of timber per hectare, and by 
later differentiating it between Tvol_log and Tvol_pulp (Appendix V). On the other hand, the 
group enclosing all areas with a relatively high natural interest was developed by separating 
those areas currently under the protection of the Natura2000 scheme, from the ones without any 
protection. The protected area was directly delineated with the assistance of an additional source 
of geographical information (see Particular cases – Natura2000 protected areas), and then 
introduced into the FWC, without going through any previous classification process. Finally, the 
distinction between areas with a relatively high biodiversity value and those with not only a high 
natural value but also with some social interest, was based on the predicted values for CDW & 
GC (Appendix VI). 
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Eventually, the link between ALS-predicted sustainability indicators and ToSIA was 
accomplished with the creation and quantitative characterization of different polygon layers in 
ArcMap10 (ESRI 2010), each one representing a different process within the ToSIA FWC. This 
final step was not performed in the present study, but it has already been successfully tested in a 
previous Bachelor thesis (Korvenranta 2011). 

Particular cases (modifications of the general methodology) 

Due to several reasons, some of the input information and indicators for the ToSIA FWC were 
obtained without following the general methodology previously presented: 

1. Delineation of Forest and Other Wooded Land area 

As previously stated, only the forest land as defined by Food and Agriculture Organization-FAO 
(2011) was considered in the analysis. This definition encloses all land areas spanning more than 
0.5ha, with trees higher than 5m, a canopy cover of at least 10%, and/or with trees able to reach 
these thresholds in situ. The first three criteria were directly applied to the ALS data: all laser hits 
with an aboveground height over 5m were filtered, and then their canopy cover was calculated 
with a threshold value of 10%. Once those areas were delineated in ArcMap10 (ESRI 2010), 
only those expanding more than 0.5ha were selected. 

 
Figure 4. Specific zone within the study area that presented spatial differences between the areas delineated with 

ALS data alone (a), and the one derived from the CLC land use cover (b) 
 

However, with the utilization of ALS data alone, it was not possible to consider all those areas 
that did not present the threshold values when the ALS flight was carried out, but that would 
potentially be able to reach them in the future (i.e. clear cut areas). In order to fulfill this last 
requirement in the definition, we decided to use an additional source of geographical 
information. One raster layer, corresponding to the CORINE Land Cover (CLC) classification 
from the year 2006, was obtained from the Finnish Environmental Administration (OIVA 2013). 
Only CLC categories including a tree cover over 10% and trees higher than 5m were selected, 
and the spatial difference between the area firstly delineated from the ALS data alone, and the 
one resulting from the reclassification of the CLC raster layer, was computed. Considering that 
the CLC layer used in this study was created three years before the acquisition of the ALS data 
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(in 2009), we assumed that the difference corresponded to forest areas harvested during the 
period from 2006 to 2009. Eventually, all these differing areas were added to the area directly 
delineated with ALS data (Figure 4). 

 
2. Natura2000 protected areas 

 
One raster layer including all Natura2000 protected areas in Finland was obtained from the 
Finnish Environmental Administration (OIVA 2013). After a visual checking, we identified that 
one part of the protected site called Jukavaara-Särkilamminvaara fell inside our study region. 
This area is currently protected for its natural and landscape value at the national level, since it 
contains some endangered habitat types included in the Council Directive 92/43/EEC on the 
conservation of natural habitats and of wild fauna and flora, so-called Habitats Directive. Some 
the endangered habitats that currently exist in this region are dystrophic ponds and lakes, ridges 
of forested habitats, and also wooded swamps. As stated before, this piece of land currently 
protected by the Natura2000 network, was directly subtracted and included in the ToSIA FWC, 
within the part of the chain developed from process 1007040. 
  

3. Probability of existence of standing/lying coarse woody debris (1-7) 

The usefulness of ALS data for inventorying Coarse Woody Debris (CWD) is based on the 
reflections detected from the gaps within partially closed canopy surfaces. However, CWD 
dynamics in managed forest areas is quite different as compared to unmanaged ones. In the 
latter, canopy gaps are only originated by natural mortality processes
of the individuals, so a direct relationship can be established with the existence of deadwood 
material inside these gaps. On the other hand, in managed forest areas canopy gaps are not only 
the result of these kind of processes, but they can also be the result of silvicultural operations 
(e.g. thinning) (Packalén and Maltamo 2008). However, Pesonen et al. (2010) pointed out that 
after harvesting logging residues that form CWD may also be left in the stands, and thereby, the 
variation in canopy structure in managed forest areas may also indicate the existence of 
deadwood material. Following the advice made by Pesonen et al. (2009), who defined as 
challenging the construction of biologically functioning prediction models for the direct 
estimation of CWD volumes in commercial forest areas, we selected two different logistic 
models for the prediction of the probability of existence of lying and standing coarse woody 
debris in each grid cell, respectively (equations 8-9). 

Due to a lack of field data, these two models were directly implemented into the whole study 
area without going through any regression analysis procedure. 

 

DDW = -1.2076 + 0.1249*(f_h30)      (8) 

 

Where:    DDW - probability of existence of downed or lying coarse woody debris (1-14) 

 f_h30 - height at which the accumulation of first laser pulse heights is 30% 
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SDW = -4.0311 + 1.1525*( ) – 0.5433*(Ln(f_p0))   (9) 

 

Where:   SDW - probability of existence of standing coarse woody debris (1-14) 

f_h20 - height at which the accumulation of first laser pulse heights is 20%. 

              f_p0 - proportion of first laser hits accumulating at the 0% height. 

 

Finally, we calculated the probability of existence of Coarse Woody Debris (CWD) as the sum of 
the two probabilities in each grid cell. Therefore, the range of CWD was 1-14. 

4. Proportion of species mixture 
 

One of the main limitations when using ALS data alone in forest inventories is the differentiation 
between tree species. In order to overcome this limitation, we firstly took advantage of the 
species identification carried out during the field inventory for all measured trees. Secondly, we 
used another additional source of remote sensing information, this time one multispectral aerial 
image covering the entire study area. 

Based on the species identification undertaken in the field, we calculated the species composition 
within each one of the sample plots, weighted by the basal area of each one of the individuals 
measured. The reason for weighting the species proportion by the basal area was based on the 
assumption that trees with a bigger diameter usually are characterized by bigger tree crowns, 
resulting in bigger reflectance responses when working with multispectral images. Once the 
mixture of species was calculated in each plot, a supervised classification procedure was 
implemented in the aerial image. This classification process was based on a maximum likelihood 
algorithm (Chuvieco 2002). During the training phase, five different land use classes were 
targeted: 1) Unforested; 2) Deciduous; 3) Pine; 4) Spruce and 5) Water bodies. Classes 1 and 5 
were directly delineated based on a visual interpretation of the aerial image. On the other hand, 
for the other three classes (2 to 4) we used as ground-truth data all the values obtained for the 
different plot species composition. Then, the spectral signatures for the different categories were 
extracted, and these were later used in a soft classification process. Instead of classifying each 
pixel to one single class based on its highest probability value to belong to one specific category, 
we obtained the probabilities for each single pixel to belong to each individual category, 
independently. Only those raster files representing the probabilities of the grid cells to belong to 
classes 3, 2 and 4 were selected, in this order, to create a composite band RGB representation. 
The final band composition raster file represented the proportion of species mixture in each grid 
cell in which the study area was divided (Appendix VII). 
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Results 

Table 1. Subset of the ten first sample plots with the values corresponding to the eight different indicators calculated 
for each one. Acronyms Own. and Dom_sp correspond to Ownership type and Dominant species, respectively. All 

the rest, correspond to the respective names given earlier to the different indicators. 

Plot Own.a Dom_spb Tvol   
(m3/ha)

Tvol_log 
(m3/ha)

Tvol_pulp 
(m3/ha)

GC 
(0-1)

TAB  
(kg/ha)

TBG  
(kg/ha)

1 U p 310.11 211.36 84.98 0.63 156143.23 50050.63

2 U p 170.38 96.82 64.94 0.60 117846.20 42161.95

3 U p 198.90 94.16 99.20 0.35 98638.66 34819.43

4 U m 156.89 49.91 92.19 0.51 101647.95 22287.94

5 U b 164.37 12.07 133.29 0.46 101787.44 13201.05

6 U s 469.27 364.45 95.82 0.65 215107.88 45702.25

7 U b 138.17 43.73 82.01 0.62 107745.78 21373.85

8 U p 247.32 138.97 101.12 0.39 125560.50 45862.46

9 U s 292.41 115.99 154.38 0.55 204007.12 36987.77

10 U s 261.93 87.96 157.90 0.46 155193.18 26409.59  
a U = UPM; b p = Pinus sylvestris; m = Mixed stands (no dominant sp.); b = Betula sp.; s = Picea abies 

Table 2. Fitted models with the lowest AIC values for the different selected variables. 

Dependent 
variable 

Predictive modela RMSE% 

Tvol (m3/ha) -4.859 – 50.622*AAD + 40.427*P70 16.87 

Log(Tvol_log) 

(m3/ha) 
-6.232 + 3.535*Max 8.37 

Log(Tvol_pulp) 
(m3/ha) 

9.278 – 2.523*Max + 1.382*Mean 6.88 

GC (0-1) -1.907 + 4.345*LCV + 0.037*PRAb1-0.020*PRAbMd 18.13 

Log(TAB) (kg/ha) 9.849 – 0.894*Mean 1.53 

TBG (kg/ha) -2986+2975.4*P70 25.16 

DDW (1-7) -1.208+0.125*P30 R2=0.22 

SDW (1-7) -4.0311 + 1.1525*(sqrt(F_H20)) – 0.5433*(Ln(F_P0)) R2= 0.29 

 

a AAD = Elevation Average Absolute Deviation; P70 & P30 = quantiles corresponding to the 70 & 30 percentiles of 
the pulse laser height distributions, respectively; Max = Maximum elevation; Mean = Mean elevation; LCV = L-
moments Coefficient of Variation; PRAb1 = Percentage of all returns above 1m aboveground height; PRAbMd = 

Percentage of all returns above the mode height; sqrt(F_H20) = square root of the height at which the accumulation 
of first laser pulse heights is 20%; Ln(F_P0) = natural logarithm of the proportion of first laser hits accumulating at 

the 0% height. 
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Eight different plot indicators were collected, either directly from the field measurements, or 
derived from the original data (Table 1). All plot indicators, except Ownership type (Own.) and 
Dominant species (Dom_sp), were regressed against the predictor variables derived from the 
distributions of the laser hits within each one of the plots. 

The selection of the best linear models for the predictions was based on the lowest AIC values 
(Akaike 1973). Finally, logarithmic transformations were applied into the models when potential 
heterocedastic influences were detected in the predictions. The only models that did not require 
such transformations were the ones for the prediction of Tvol_log, Tvol_pulp and TAB (Table 2). 

All selected models comprised a maximum of three predictor variables, which was settled as a 
threshold in order to avoid higher significant correlations between the different predictors. The 
lowest RMSE% values were obtained for Tvol_log, Tvol_pulp and TAB indicators, whereas they 
were much higher for Tvol, GC and TBG. The coefficient of determination (R2) was found to be 
higher than 0.6 in almost all models, except for Total volume of pulp (0.40) and for Total 
belowground biomass (0.52) (Figure 5). The coefficient presented its highest values for Tvol and 
Tvol_log, 0.78 in both cases. 

 

 

Figure 5. Scatter plots of the different predicted values for the dependent variables, versus the observed ones during 
the field sample inventory. a) Total volume (m3/ha); b) Total volume of logs (m3/ha); c) Total volume of pulp 

(m3/ha); d) Gini coefficient (0-1); e) Total aboveground biomass (kg/ha); f) Total belowground biomass (kg/ha) 

 
The next step was the extrapolation of the last six models throughout the entire study area, and 
the spatial representation of all predicted values for each dependent variable. The graphical 
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representations for the distributions of the eight predicted dependent variables (Table 2) have 
been included in Appendix II. 

Several clustering processes for Tvol_log, Tvol_pulp, GC & CDW were applied until we finally 
obtained the spectral signature of eight different classes, which were considered to accurately 
represent the different processes of the ToSIA FWC (Appendix III). The main clustering 
criterion was the GC, which divided the different areas into the two main groups presumed in the 
FWC (Figure 2): 1007039 where stands with low GC (<0.5) were selected for productive use; 
and 1007040 where the stands with high GC (>0.5) were selected for their biodiversity and/or 
recreational interest. However, an additional requirement for the inclusion of the forest areas into 
the first category was that the sum of Tvol_log & Tvol_pulp had to be at least 33% once both 
variables were normalized in their ranges. The method also succeeded in discriminating those 
areas more suitable foe saw-wood or pulp-wood production, achieving good class separability 
after disaggregating by GC. Figure 4 also illustrates how some of these classes would have been 
difficult to discriminate without using GC, as they overlap according to their Tvol_log and 
Tvol_pulp. On the other hand, the distinction within the areas with a relatively high natural 
interest was based on the values for GC and CWD. All areas with an interest only for biodiversity 
conservation presented a GC between 0.5-1 and CWD>7; whereas areas with an extra added 
social value were characterized by GC values between 0.5-0.75, and CWD<0.5. 
  
The classification output is displayed in Appendix IV. Describing the different classes according 
to the order presented in the map legend: 1) In red, includes all the areas where the models did 
predict either negative values, or values really close to zero for all three predicted variables; 2) In 
yellow, corresponded to those areas where the sum of the predicted Total volume of logs (m3/ha) 
and Total volume of pulp (m3/ha) was lower than 33% of the variables normalized range. This 
category was also characterized by a GC<0.5 and a probability to find CWD lower than 7/14; 3) 
In pink, presented similar characteristics to the second one, except that Tvol_pulp was the most 
significant volume-related variable instead of Tvol_log; 4) In orange, included all those areas 
with an economically significant production of pulpwood, rather even-sized forest stands, and a 
high probability to find CWD (>0.5); 5) In brown, corresponded to all those areas with similar 
characteristics as the previous one, but with an economical interest due to their big amount of 
timber for saw logs production; 6) In light green, characterized by low values both for saw log 
and pulpwood yields, but with a Gini coefficient over 0.5 and a low probability to find CWD; 
7&8) The darker greens, included all areas with a high production of either sawn logs or fibre, 
respectively, with a complex forest structure, and with a high probability of existence of 
deadwood material. 

The result of the reclassification into two different classes is shown in Appendix V. Following 
the order for the classes previously specified, the aggregation into the two classes was carried out 
according to: 1) Other areas: which included categories 1, 2 & 3; 2) Harvesting: corresponding to 
the initial classes 4 & 5; 3) Biodiversity and/or recreation interest: categories 6, 7 & 8. 

Finally, new categories 2 & 3 were further divided according to the different processes included 
in the FWC (Figure 2). For instance, category number 2 (Harvesting) was subdivided by 
differentiating initial categories 4 & 5, therefore, separating areas with a high timber yield for the 
production of saw logs from areas with a high content of pulpwood (Appendix VI). On the other 
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hand, initial category 3 (Biodiversity and/or recreation interest) was subdivided into areas with or 
without recreational interest (Appendix VII). 

 
Discussion & prospects for the future 
 
Surprisingly, two of the lowest RMSE% values in Table 2 were obtained for the models 
predicting Tvol_log and Tvol_pulp metrics. In the sample plot inventory, not only the minimum 
tree diameter and minimum and maximum lengths for the logs criteria were applied to determine 
the two volumes for each individual tree. During the process, it was also preferred to optimize 
the economical benefit by subjectively varying the different lengths of the potential saw and pulp 
logs obtained from a certain tree. Since this subjective component will never be predictable with 
regression modelling processes, we found these two values rather unexpected. In contrast, the 
low value obtained for the R2 in the model for Tvol_pulp, may indicate this phenomenon.  

The study area analyzed by Pesonen et al. (2009) in the estimation of the probability of existence 
of coarse woody debris, presented highly similar conditions to the one analyzed in this study. 
The study area was located in a typically commercial forest managed area in the central part of 
Finland, and it was mostly owned by the same company, UPM. That is the reason why we 
decided to utilize the same two models (equations 8-9) in this study. 
 
The combination of the four selected variables in the classification process (Tvol_log, Tvol_pulp, 
GC and CWD) was considered suitable to represent all the processes created in the ToSIA FWC. 
By establishing a limit of 33% out of the normalized ranges for the sum of the first two, we 
clearly indicated the economic interest of the different areas. Moreover, in this study we 
implemented the threshold at GC=0.5 defined as a border between even-sized and uneven-sized 
forests by Valbuena et al. (2012). The Gini coefficient has already been demonstrated to be a 
good indicator of the forest structure, which can be related with higher ecological values of forest 
stands. On the other hand, Edwards et al. (2010) characterized, for the Nordic European region, 
the public preferences to both the variation in tree size within tree stands and to the existence of 
harvesting residues. The perception of the first silvicultural attribute was defined with a bell-
shaped curve, implying that very low or very high variations between trees were negatively 
perceived. Concerning the existence of deadwood material, the relation presented a negative 
value. 

Despite some limitations (e.g. delineation of Forest and Other Wooded Land area), ALS sensors 
have demonstrated to have a great potential for estimating environmental sustainability 
indicators. For instance, even though only six out of the eight predicted forest variables were 
finally used in this study, the two biomass-related parameters could also be used to calculate new 
sustainability indicators (e.g. carbon stock). 

This study has also demonstrated that is possible to overcome some of these limitations when 
combining ALS data with other sources of remote sensing information and/or geographical data. 
One clear example is the possibility of differentiating between species with the addition of 
multispectral aerial images into the analysis. This would allow for the prediction of new and 
more accurate indicator estimates, such as the segmentation of the value for the Total 
commercial volume into the different species (in this study corresponded to the sum of Tvol_log 
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& Tvol_pulp). This may be a highly interesting indicator in countries such as Finland, where 
commercial forestry and the forest sector in general, have an important role in the national 
economy. We are currently working on the improvement of the models by analyzing their 
sensitivity both species composition and ownership type. Due to time and space constraints in 
this manuscript, we decided not to include any of these results in the study. However, they will 
be an important part of the results and discussion in a future version of this report. 

Finally, I would like to remark that there are numerous possibilities for the prediction of new 
indicators, representing each one a new single research challenge. For instance, once the 
vegetation cover type is characterized, it would be feasible to calculate the potential 
evapotranspiration of that specific land cover. Furthermore, Digital Terrain Models produced 
from ALS data are characterized for having a very high resolution. That can be really helpful 
when assisting decision-makers in avalanche or landslide risk management, since that would 
provide us with a better understanding of the dynamics behind these phenomena.  
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Appendix I: Location of the 79 field sample plots within the study area (in yellow), and 
their differentiation according to ownership type. The area owned by UPM is shadowed in 
grey. 
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Appendix II 
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Appendix III: 1-Total volume of logs; 2-Total volume of pulp; 3-Gini coefficient; 4-
Probability of existence of Coarse Woody Debris   

 

Class ID 1    Number of Cells 183    

Means    3.24237       3.96189       1.77585       5.77596 

Covariance 

    1            22.13520      -2.87031       1.12173       5.92717 

    2            -2.87031      30.22076      -0.19400       2.13067 

    3             1.12173      -0.19400      27.45294      -0.96285 

    4             5.92717       2.13067      -0.96285       4.57041 

Class ID 2    Number of Cells 70   

Means    28.77259       3.15701       7.40896       9.40000 

Covariance 

    1            78.04348      -3.23147     -22.19686       1.23292 

    2            -3.23147      35.22125      17.31625       4.35641 

    3           -22.19686      17.31625      80.92136      -4.10853 

    4             1.23292       4.35641      -4.10853       9.02609 

Class ID 3   Number of Cells 92 

Means    5.14743      25.23847      14.73106       7.25000 

Covariance 

    1            36.90389     -13.53885      12.97806       8.30465 

    2           -13.53885      84.60917     -11.78061      -1.36407 

    3            12.97806     -11.78061     104.60118       0.43472 

    4             8.30465      -1.36407       0.43472       3.06868 

Class ID 4    Number of Cells 58    

Means    8.49524      42.72372      51.50512       8.36207 

Covariance 

    1            66.38082     -17.93472      -2.72208      12.97703 

    2           -17.93472     118.55005      39.04666       2.36690 

    3            -2.72208      39.04666     108.00369      -4.06796 
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    4            12.97703       2.36690      -4.06796       4.02450 

Class ID 5    Number of Cells 44    

Means    35.34444       3.07939      42.07282       8.06818 

Covariance 

    1           112.29281     -12.34531      20.55422      11.79787 

    2           -12.34531      29.11814       9.00531       5.66754 

    3            20.55422       9.00531     103.55170      -0.77943 

    4            11.79787       5.66754      -0.77943       8.62315 

Class ID 6     Number of Cells 52    

Means    15.32100      13.76955      66.74054       6.53846 

Covariance 

    1           116.15757       7.94546      11.65752      19.38899 

    2             7.94546     128.31227     -11.74174      16.78034 

    3            11.65752     -11.74174     151.01891      -5.02393 

    4            19.38899      16.78034      -5.02393       6.76320 

Class ID 7    Number of Cells 57    

Means    14.06011      48.30201      91.26760       8.43860 

Covariance 

    1           124.44171      -2.89183      -0.35539      20.50673 

    2            -2.89183     153.35814      17.98589      12.66592 

    3            -0.35539      17.98589      98.52361      -0.43447 

    4            20.50673      12.66592      -0.43447       5.50063 

Class ID 8    Number of Cells 54    

Means   49.11256      11.56710      91.64449       9.40741 

Covariance 

    1           139.06345     -48.09203     -17.44329       6.70367 

    2           -48.09203     143.92722      30.13732      15.43061 

    3           -17.44329      30.13732      94.34750      -0.99782 

    4             6.70367      15.43061      -0.99782       6.92523 
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Appendix VIII 
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